Research on the Thermal Effect of Micro-Channel Cooled Thin-Slab Tm:YAP Lasers
Abstract
:1. Introduction
2. Numerical Model
3. Thermal Analysis of the Tm:YAP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henderson, S.W.; Hale, C.P.; Magee, J.R.; Kavaya, M.J.; Huffaker, A.V. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho: YAG lasers. Opt. Lett. 1991, 16, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.Y.; Huber, G.; Byer, R.L.; Mitzscherlich, P. Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG. IEEE J. Quantum Electron. 1988, 24, 924–933. [Google Scholar] [CrossRef]
- Dergachev, A.; Armstrong, D.; Smith, A.; Drake, T.; Dubois, M. 3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho: YLF MOPA system. Opt. Express 2007, 15, 14404–14413. [Google Scholar] [CrossRef] [PubMed]
- Elder, I.F.; Payne, M.J.P. Lasing in diode-pumped Tm: YAP, Tm, Ho: YAP and Tm, Ho: YLF. Opt. Commun. 1998, 145, 329–339. [Google Scholar] [CrossRef]
- Coluccelli, N.; Galzerano, G.; Parisi, D.; Tonelli, M.; Laporta, P. Diode-pumped single-frequency Tm: LiLuF4 ring laser. Opt. Lett. 2008, 33, 1951–1953. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hu, H.; Lin, Z.; Deng, J.; Huang, J.; Zheng, H. Anisotropic thermal analyses of a high efficiency Tm: YAP slab laser and its intra-cavity pumping for Ho lasers. Opt. Express 2020, 28, 20930–20942. [Google Scholar] [CrossRef] [PubMed]
- Elder, I.F.; Payne, J. Diode-pumped, room-temperature Tm: YAP laser. Appl. Opt. 1997, 36, 8606–8610. [Google Scholar] [CrossRef] [PubMed]
- Jun, C.; Yu, D. High power double-end-pumped Tm: YAP slab laser. Electro-Opt. Technol. Appl. 2017, 32, 9–14. [Google Scholar]
- Mao, Y.; Gao, Y.; Wang, L. 254 W laser-diode dual-end-pumped Tm: YAP InnoSlab laser. Appl. Opt. 2020, 59, 8224–8227. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ruan, K.; Hu, H.; Deng, J.; Huang, J.; Weng, W.; Lin, W. Above 10 W 2130 nm Ho: YAP laser intra-cavity pumped with composite YAP/Tm: YAP laser. Opt. Laser Technol. 2021, 136, 106733. [Google Scholar] [CrossRef]
- Ligang, Y.; Shouhuan, Z.; Hong, Z.; Guo, C.; Lei, W.; Bao, L.; Keqiang, W. 109.5 W output 1.94 micron Tm: YAP solid-state laser. Infrared Laser Eng. 2019, 48, 0405006. [Google Scholar] [CrossRef]
- Dong, J.Y.; Cui, J.W.; Wen, Y.; Wu, C.T.; Wang, C. High-effective mitigation of thermal effect in multi segment and multi concentration (MSMC) Tm: YAG crystal. Infrared Phys. Technol. 2022, 122, 104104. [Google Scholar] [CrossRef]
- Cheng, X.; Fan, M.; Cao, J.; Shang, J. Research on the thermal effect and laser resonator of diode-pumped thin-slab Tm: YAP lasers. Optik 2019, 176, 32–37. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, G.; Chen, J.; Ding, Y.; Zhao, C. Growth and anisotropic thermal properties of biaxial Ho: YAlO3 crystal. J. Appl. Phys. 2010, 108, 023108. [Google Scholar] [CrossRef]
- Aggarwal, R.L.; Ripin, D.J.; Ochoa, J.R.; Fan, T.Y. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys. 2005, 98, 103514. [Google Scholar] [CrossRef]
- Zhan, X.; Li, Z.; Liu, B.; Wang, J.; Zhou, Y.; Hu, Z. Theoretical prediction of elastic stiffness and minimum lattice thermal conductivity of Y3Al5O12, YAlO3 and Y4Al2O9. J. Am. Ceram. Soc. 2012, 95, 1429–1434. [Google Scholar] [CrossRef]
- Cheng, X.; Shang, J. Thermal behavior of micro-channel cooled thin-slab Fe: ZnSe lasers. Optik 2017, 143, 66–70. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Thermal conductivity | K, Wm−1 K−1 | 11.6//a, 9.9//b, 12.3//c |
Thermal expansion coefficient | αT, 10−6 K−1 | 9.5//a, 4.3//b,10.8//c |
Poisson ratio | ν | 0.3 |
Thermally-induced refractive index coefficient | dn/dT, 10−6 K−1 | 8.3//a, 7//b, 11.7//c |
Density | ρ, Kg/m3 | 5350 |
Thermogenesis efficiency | η | 0.215 |
Young’s modulus | E, Gpa | 318 |
Pump Power | P1 = P2, W | 100 |
Heat capacity | c, JKg−1 K−1 | 419 |
Absorption coefficient | α, cm−1 | 3.75 @ 4 at.% 2.62 @ 3 at.% 1.9 @1 at.% |
Size of Tm:YAP | D × W × L, mm | 1 × 6 × 8 |
Size of pump spots, | d × w, mm | 0.5 × 2 |
Wavelength of pump light | λP, nm | 795 |
Wavelength of laser | λL, nm | 1990 |
Ambient and cooling water temperature | Tc, K | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.; Cheng, X.; Li, Q.; Wu, X. Research on the Thermal Effect of Micro-Channel Cooled Thin-Slab Tm:YAP Lasers. Photonics 2023, 10, 680. https://doi.org/10.3390/photonics10060680
Shang J, Cheng X, Li Q, Wu X. Research on the Thermal Effect of Micro-Channel Cooled Thin-Slab Tm:YAP Lasers. Photonics. 2023; 10(6):680. https://doi.org/10.3390/photonics10060680
Chicago/Turabian StyleShang, Jianhua, Xiaojin Cheng, Qixin Li, and Xiangnan Wu. 2023. "Research on the Thermal Effect of Micro-Channel Cooled Thin-Slab Tm:YAP Lasers" Photonics 10, no. 6: 680. https://doi.org/10.3390/photonics10060680
APA StyleShang, J., Cheng, X., Li, Q., & Wu, X. (2023). Research on the Thermal Effect of Micro-Channel Cooled Thin-Slab Tm:YAP Lasers. Photonics, 10(6), 680. https://doi.org/10.3390/photonics10060680