Wavelength-Tunable Single-Longitudinal-Mode Narrow-Linewidth Thulium/Holmium Co-Doped Fiber Laser with Phase-Shifted Fiber Bragg Grating and Dual-Coupler-Ring Filter
Abstract
:1. Introduction
2. Experimental Setup and Principle
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taczak, T.M.; Killinger, D.K. Development of a tunable, narrow-linewidth, cw 2.066-μm Ho: YLF laser for remote sensing of atmospheric CO2 and H2O. Appl. Opt. 1998, 37, 8460–8476. [Google Scholar] [CrossRef]
- McComb, T.S.; Sims, R.A.; Willis, C.C.C.; Kadwani, P.; Sudesh, V.; Shah, L.; Richardson, M. High-power widely tunable thulium fiber lasers. Appl. Opt. 2010, 49, 6236–6242. [Google Scholar] [CrossRef] [Green Version]
- Jihong, G.; Qing, W.; Yinwen, L.; Shibin, J. Development of eye-safe fiber lasers near 2 μm. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 150–160. [Google Scholar] [CrossRef]
- Tendean, M.; Mambu, T.D.B.; Tjandra, F.; Panelewen, J. The use of thulium-doped fiber laser (TDFL) 1940 nm as an energy device in liver parenchyma resection, a-pilot-study in Indonesia. Ann. Med. Surg. 2020, 60, 491–497. [Google Scholar] [CrossRef]
- Janeczek, M.; Rybak, Z.; Lipińska, A.; Bujok, J.; Czerski, A.; Szymonowicz, M.; Dobrzyński, M.; Swiderski, J.; Żywicka, B. Local effects of a 1940 nm thulium-doped fiber laser and a 1470 nm diode laser on the pulmonary parenchyma: An experimental study in a pig model. Materials 2021, 14, 5457. [Google Scholar] [CrossRef]
- Fried, N.M. Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 μm. Lasers Surg. Med. 2005, 37, 53–58. [Google Scholar] [CrossRef]
- Cariou, J.-P.; Augere, B.; Valla, M. Laser source requirements for coherent lidars based on fiber technology. Comptes Rendus Phys. 2006, 7, 213–223. [Google Scholar] [CrossRef]
- Koch, G.; Beyon, J.; Barnes, B.; Petros, M.; Yu, J.; Amzajerdian, F.; Kavaya, M.; Singh, U. High-energy 2 μm Doppler lidar for wind measurements. Opt. Eng. 2007, 46, 116201. [Google Scholar] [CrossRef]
- Tao, M.; Tao, B.; Hu, Z.; Feng, G.; Ye, X.; Zhao, J. Development of a 2 μm Tm-doped fiber laser for hyperspectral absorption spectroscopy applications. Opt. Express 2017, 25, 32386–32394. [Google Scholar] [CrossRef]
- Lahyani, J.; Le Gouet, J.; Gibert, F.; Cezard, N. 2.05-μm all-fiber laser source designed for CO2 and wind coherent lidar measurement. Appl. Opt. 2021, 60, C12–C19. [Google Scholar] [CrossRef]
- Walasik, W.; Traore, D.; Amavigan, A.; Tench, R.E.; Delavaux, J.-M.; Pinsard, E. 2-μm narrow linewidth all-fiber DFB fiber Bragg grating lasers for Ho- and Tm-doped fiber-amplifier applications. J. Light. Technol. 2021, 39, 5096–5102. [Google Scholar] [CrossRef]
- Guan, X.; Yang, C.; Gu, Q.; Wang, W.; Tan, T.; Zhao, Q.; Lin, W.; Wei, X.; Yang, Z.; Xu, S. 55 W kilohertz-linewidth core- and in-band-pumped linearly polarized single-frequency fiber laser at 1950 nm. Opt. Lett. 2020, 45, 2343–2346. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Zhang, Z.; Yang, C.; Lin, W.; Cen, X.; Zhao, Q.; Feng, Z.; Yang, Z.; Xu, S. Gain-switched single-frequency DBR pulsed fiber laser at 2.0 μm. IEEE Photonics Technol. Lett. 2022, 34, 255–258. [Google Scholar] [CrossRef]
- Khamis, M.A.; Ennser, K. Enhancement on the generation of amplified spontaneous emission in thulium-doped silica fiber at 2 μm. Opt. Commun. 2017, 403, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Miluski, P.; Kochanowicz, M.; Żmojda, J.; Dorosz, D.; Łodziński, M.; Baranowska, A.; Dorosz, J. Eye safe emission in Tm3+/Ho3+ and Yb3+/Tm3+ co-doped optical fibers fabricated using MCVD-CDS system. Opt. Mater. 2020, 101, 109711. [Google Scholar] [CrossRef]
- Zhou, D.; Bai, X.; Zhou, H. Preparation of Ho3+/Tm3+ co-doped lanthanum tungsten germanium tellurite glass fiber and its laser performance for 2.0 μm. Light-Sci. Appl. 2017, 7, 44747. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Fu, S.; Shi, G.; Sun, S.; Sheng, Q.; Shi, W.; Yao, J. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices. Optik 2019, 187, 291–296. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, F.; Feng, T.; Qin, Q.; Zhang, L.; Guan, B.; Han, W.; Bai, Z.; Zhou, H.; Suo, Y. Stable multi-wavelength thulium-doped fiber laser with two cascaded single-mode-four-mode-single-mode fiber interferometers. IEEE Access 2021, 9, 1197–1204. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Ahmad, H.; Khodaie, A.; Amiri, I.S.; Ismail, M.F.; Harun, S.W. A stable dual-wavelength thulium-doped fiber laser at 1.9 μm using photonic crystal fiber. Light-Sci. Appl. 2015, 5, 14537. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Peter, Y.-A.; Rochette, M. Chalcogenide Fabry–Perot fiber tunable filter. IEEE Photonics Technol. Lett. 2018, 30, 2013–2016. [Google Scholar] [CrossRef]
- Camarillo-Aviles, A.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.M.; Hernandez-Escobar, E.; Sierra-Hernandez, J.M.; Pottiez, O.; Duran-Sanchez, M.; Ibarra-Escamilla, B.; Bello-Jimenez, M. Stable multi-wavelength thulium-doped all-fiber laser incorporating a multi-cavity Fabry–Perot filter. IEEE Photonics J. 2019, 11, 7105307. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, F.; Feng, T.; Qin, Q.; Han, W.; Cheng, D.; Yu, C.; Yang, D.; Zhou, H.; Suo, Y. Wavelength-switchable single-longitudinal-mode thulium-doped fiber laser at 2.05 µm using a superimposed fiber Bragg grating. Infrared Phys. Technol. 2022, 122, 104058. [Google Scholar] [CrossRef]
- Yan, F.; Peng, W.; Liu, S.; Feng, T.; Dong, Z.; Chang, G.-K. Dual-wavelength single-longitudinal-mode Tm-doped fiber laser using PM-CMFBG. IEEE Photonics Technol. Lett. 2015, 27, 951–954. [Google Scholar] [CrossRef]
- Wang, L.; Shen, Z.; Feng, X.; Li, F.; Cao, Y.; Wang, X.; Guan, B.-O. Tunable single-longitudinal-mode fiber laser based on a chirped fiber Bragg grating. Opt. Laser Technol. 2020, 121, 105775. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, F.; Feng, T.; Guo, Y.; Qin, Q.; Zhou, H.; Suo, Y. Switchable multi-wavelength thulium-doped fiber laser employing a polarization-maintaining sampled fiber Bragg grating. IEEE Access 2019, 7, 155437–155445. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, F.; Feng, T.; Han, W.; Guan, B.; Qin, Q.; Guo, Y.; Wang, W.; Bai, Z.; Zhou, H.; et al. Six-wavelength-switchable narrow-linewidth thulium-doped fiber laser with polarization-maintaining sampled fiber Bragg grating. Opt. Laser Technol. 2021, 136, 106788. [Google Scholar] [CrossRef]
- Qin, Q.; Yan, F.; Liu, Y.; Cui, Z.; Dan, C.; Yu, C.; Jiang, Y.; Suo, Y.; Zhou, H.; Feng, T. Twelve-wavelength-switchable thulium-doped fiber laser with a multimode fiber Bragg grating. IEEE Photonics J. 2021, 13, 7100710. [Google Scholar] [CrossRef]
- Li, Q.; Yan, F.P.; Peng, W.J.; Yin, G.L.; Feng, T.; Tan, S.Y.; Liu, S. A single frequency, linear cavity Tm-doped fiber laser based on phase-shifted FBG filter. Opt. Laser Technol. 2014, 56, 304–306. [Google Scholar] [CrossRef]
- Yang, D.; Yan, F.; Feng, T.; Qin, Q.; Li, T.; Yu, C.; Wang, X.; Jiang, Y.; Kumamoto, K.; Suo, Y. Stable narrow-linewidth single-longitudinal-mode thulium-doped fiber laser by exploiting double-coupler-based double-ring filter. Infrared Phys. Technol. 2023, 129, 104568. [Google Scholar] [CrossRef]
- Feng, T.; Wei, D.; Bi, W.; Sun, W.; Wu, S.; Jiang, M.; Yan, F.; Suo, Y.; Yao, X.S. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter. Opt. Express 2021, 29, 31179–31200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, J.; Sheng, Q.; Shi, C.; Shi, W.; Yao, J. Watt-level 1.7-μm single-frequency thulium-doped fiber oscillator. Opt. Express 2021, 29, 27048–27056. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Yan, F.; Feng, T.; Han, W.; Zhang, L.; Qin, Q.; Li, T.; Bai, Z.; Yang, D.; Guo, Y.; et al. Five-wavelength-switchable single-longitudinal-mode thulium-doped fiber laser based on a passive cascaded triple-ring cavity filter. IEEE Photonics J. 2022, 14, 1503608. [Google Scholar] [CrossRef]
- Feng, T.; Su, J.; Wei, D.; Li, D.; Li, C.; Yan, F.; Steve Yao, X. Effective linewidth compression of a single-longitudinal-mode fiber laser with randomly distributed high scattering centers in the fiber induced by femtosecond laser pulses. Opt. Express 2023, 31, 4238–4252. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, Q.; Zhang, L.; Shi, C.; Sun, S.; Bai, X.; Shi, W.; Yao, J. Single-frequency 1.7-μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior. Opt. Express 2021, 29, 21409–21417. [Google Scholar] [CrossRef]
- Jiang, K.; Yang, C.; Zhao, Q.; Gu, Q.; Li, J.; Jiang, W.; Deng, C.; Peng, Y.; Zhou, K.; Feng, Z.; et al. Widely tunable sub-kHz linewidth Tm3+-doped single-frequency fiber laser. Appl. Phys. Express 2022, 15, 112001. [Google Scholar] [CrossRef]
- Zhang, L.; Sheng, Q.; Chen, L.; Zhang, J.; Fu, S.; Fang, Q.; Wang, Y.; Shi, W.; Yao, J. Single-frequency Tm-doped fiber laser with 215 mW at 2.05 μm based on a Tm/Ho-codoped fiber saturable absorber. Opt. Lett. 2022, 47, 3964–3967. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber grating spectra. J. Light. Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- Lv, B.; Zhang, W.; Huang, W.; Li, F. Low frequency-noise ring random fiber laser with a dual-cavity FBG Fabry-Perot filter. J. Light. Technol. 2022, 40, 5286–5293. [Google Scholar] [CrossRef]
- Wei, D.; Feng, T.; Sun, W.; Yan, F.; Yao, X.S. Widely wavelength-swept single-longitudinal-mode fiber laser with ultra-narrow linewidth in C+L-band. IEEE Photonics J. 2022, 14, 7134810. [Google Scholar] [CrossRef]
- Bai, Z.; Zhao, Z.; Qi, Y.; Ding, J.; Li, S.; Yan, X.; Wang, Y.; Lu, Z. Narrow-linewidth laser linewidth measurement technology. Front. Phys. 2021, 9, 768165. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, Y.; Yang, J.; Wang, Y.; Wang, S.; Tao, K.; Zhan, L.; Xu, J. High signal-to-noise ratio, single-frequency 2 μm Brillouin fiber laser. Opt. Lett. 2014, 39, 2626–2628. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Mao, B.M.; Wei, Y.; Chen, D. Widely wavelength-tunable 2 μm Brillouin fiber laser incorporating a highly germania-doped fiber. Appl. Opt. 2018, 57, 6831–6834. [Google Scholar] [CrossRef] [PubMed]
- Debut, A.; Zemmouri, J.; Randoux, S. Linewidth narrowing in Brillouin lasers: Theoretical analysis. Phys. Rev. A 2000, 62, 023803. [Google Scholar] [CrossRef]
- Cowle, G.J.; Morkel, P.R.; Laming, R.I.; Payne, D.N. Spectral broadening due to fibre amplifier phase noise. Electron. Lett. 1990, 26, 424–425. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Feng, T.; Guo, S.; Wu, S.; Yan, F.; Li, Q.; Yao, X.S. Wavelength-Tunable Single-Longitudinal-Mode Narrow-Linewidth Thulium/Holmium Co-Doped Fiber Laser with Phase-Shifted Fiber Bragg Grating and Dual-Coupler-Ring Filter. Photonics 2023, 10, 693. https://doi.org/10.3390/photonics10060693
Li D, Feng T, Guo S, Wu S, Yan F, Li Q, Yao XS. Wavelength-Tunable Single-Longitudinal-Mode Narrow-Linewidth Thulium/Holmium Co-Doped Fiber Laser with Phase-Shifted Fiber Bragg Grating and Dual-Coupler-Ring Filter. Photonics. 2023; 10(6):693. https://doi.org/10.3390/photonics10060693
Chicago/Turabian StyleLi, Dongyuan, Ting Feng, Shaoheng Guo, Shengbao Wu, Fengping Yan, Qi Li, and Xiaotian Steve Yao. 2023. "Wavelength-Tunable Single-Longitudinal-Mode Narrow-Linewidth Thulium/Holmium Co-Doped Fiber Laser with Phase-Shifted Fiber Bragg Grating and Dual-Coupler-Ring Filter" Photonics 10, no. 6: 693. https://doi.org/10.3390/photonics10060693
APA StyleLi, D., Feng, T., Guo, S., Wu, S., Yan, F., Li, Q., & Yao, X. S. (2023). Wavelength-Tunable Single-Longitudinal-Mode Narrow-Linewidth Thulium/Holmium Co-Doped Fiber Laser with Phase-Shifted Fiber Bragg Grating and Dual-Coupler-Ring Filter. Photonics, 10(6), 693. https://doi.org/10.3390/photonics10060693