Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength
Abstract
:1. Introduction
2. Theoretical Analysis and Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brongersma, M.L.; Shalaev, M.V. The case for plasmonics. Science 2010, 328, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Xu, H.; Stief, F.; Zn, N.; Yu, M. Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits. Opt. Express 2011, 19, 20233–20243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, M.L.; Righini, R.M. Quidant Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Epstein, I.; Arie, A. Arbitrary bending plasmonic light waves. Phys. Rev. Lett. 2014, 112, 23903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jianhua, H.; Wei, W.; Xuan, X.; Jun, T.C.; Fan, G.; Jing, C.; Shuai, Z. Ultraviolet ultranarrow second-order magnetic plasmon induced reflection of lifted 3D metamaterials for slow light and optical sensing. Results Phys. 2023, 47, 2211–3797. [Google Scholar] [CrossRef]
- Ren, Y.Q.; Wang, X.X.; Di, X.J.; Jia, T.X.; Chen, T.S.; Zhang, L.P.; Yang, H.; Qi, Y.; Tang, C. Theoretical study on fabrication of sub-wavelength structures via combining low-order guided mode interference lithography with sample rotation. J. Opt. 2023, 25, 15001. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Tavousi, A.; Mansouri-Birjandi, M.A. Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl. Opt. 2018, 57, 7798–7804. [Google Scholar] [CrossRef]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity with round-corners. IEEE Sens. J. 2016, 16, 3041–3046. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 2017, 249, 168–176. [Google Scholar] [CrossRef]
- Min, C.; Shen, Z.; Shen, J.; Zhang, Y.; Fang, H.; Yuan, G. Focused plasmonic trapping of metallic particles. Nat. Commun. 2013, 4, 2891. [Google Scholar] [CrossRef]
- Zhu, X.; Schülzgen, A.; Wei, H.; Kieu, K.; Peyghambarian, N. White light bessel-like beams generated by miniature all-fiber device. Opt. Express 2011, 19, 11365–11374. [Google Scholar] [CrossRef]
- Baumgartl, J.; Mazilu, M.; Dholakia, K. Optically mediated particle clearing using airy wavepackets. Nat. Photonics 2008, 2, 675–678. [Google Scholar] [CrossRef]
- Arlt, J.; Garces-Chavez, V.; Sibbett, W.; Dholakia, K. Optical micromanipulation using a bessel light beam. Opt. Commun. 2001, 197, 239–245. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Wang, S.; Zhu, S.; Zhang, X. Broad band focusing and demultiplexing of in-plane propagating surface plasmons. Nano Lett. 2011, 11, 4357–4361. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.; Zhao, S.; Xia, D.; Li, L. Generation of the Airy beam based on the truncated asymptotic expression of the Airy function using a transmissive metasurface. Opt. Express 2022, 30, 43842–43851. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, S.N. Plasmonic airy beam generated by in-plane diffraction. Phys. Rev. Lett. 2011, 107, 126804. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.; Ding, M.; Shi, J.; Hua, P.; Wang, P.; Yuan, L.; Brambilla, G. Experimental observation and analysis of all-fiber plasmonic double airy beams. Opt. Express 2014, 22, 18365–18371. [Google Scholar] [CrossRef] [Green Version]
- Epstein, I.; Lilach, Y.; Arie, A. Shaping plasmonic light beams with near-field plasmonic holograms. J. Opt. Soc. Am. B 2014, 31, 1642–1647. [Google Scholar] [CrossRef]
- Epstein, I.; Arie, A. Dynamic generation of plasmonic bottle-beams with controlled shape. Opt. Lett. 2014, 39, 3165–3168. [Google Scholar] [CrossRef]
- Libster-Hershko, A.; Epstein, I.; Arie, A. Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams. Phys. Rev. Lett. 2014, 113, 123902. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.M.; Zhu, S.N. Collimated plasmon beam: Nondiffracting versus linearly focused. Phys. Rev. Lett. 2013, 110, 46807. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, R.; Liu, H.; Zhu, S.; Segev, M. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun. 2016, 7, 10747. [Google Scholar] [CrossRef]
- Chong, S.; Hui, L.; Yi, W.; Zhu, S.N.; Genov, D.A. Trapping light by mimicking gravitational lensing. Nat. Photonics 2013, 7, 902–906. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Yun, H.; Lee, G.Y.; Lee, B. Interferometric control of plasmonic resonator based on polarization-sensitive excitation of surface plasmon polaritons. Opt. Express 2016, 24, 21861–21868. [Google Scholar] [CrossRef]
- Lee, G.Y.; Lee, S.Y.; Yun, H.; Park, H.; Kim, J.; Lee, K.; Lee, B. Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits. Sci. Rep. 2016, 6, 33317. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Peng, T.; Wei, L.; Tao, H.; Wang, J.; Wang, Y.; Lin, F.; Fang, Z.; Zhu, X. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. Appl. Phys. Lett. 2015, 106, 161106. [Google Scholar] [CrossRef]
- Avayu, O.; Epstein, I.; Eizner, E.; Ellenbogen, T. Polarization controlled coupling and shaping of surface plasmon polaritons by nanoantenna arrays. Opt. Lett. 2015, 40, 1520–1523. [Google Scholar] [CrossRef]
- Chen, L.; Ren, T.; Zhao, Y. Polarization-independent wavefront manipulation of surface plasmons with plasmonic metasurfaces. Adv. Opt. Mater. 2020, 8, 2000868. [Google Scholar] [CrossRef]
- Rechcińska, K.; Król, M.; Mazur, R.; Morawiak, P.; Mirek, R.; Łempicka, K.; Bardyszewski, W.; Matuszewski, M.; Kula, P.; Piecek, W.; et al. Engineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavities. Science 2019, 366, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zheng, H.; Zhong, Y.; Yu, J.; Chen, Z. Wave-vector-varying pancharatnam-berry phase photonic spin hall effect. Phys. Rev. Lett. 2021, 126, 83901. [Google Scholar] [CrossRef]
- Jia, W.; Gao, C.; Zhao, Y.; Li, L.; Wen, S.; Wang, S.; Bao, C.; Jiang, C.; Yang, C.; Yang, Y. Intracavity Spatiotemporal Metasurfaces. Adv. Photonics 2023, 5, 26002. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Ke, J.C.; Liang, J.C.; Dai, J.Y.; Cheng, Q.; Cui, T.J. Manipulation of Arbitrary Polarizations and Phases Based on Metasurfaces. Adv. Opt. Mater. 2023, 11, 2202790. [Google Scholar] [CrossRef]
- Valynets, N.I.; Paddubskaya, A.G.; Sysoev, V.I.; Gorodetskiy, D.V.; Bulusheva, L.G.; Okotrub, A.V. Fluorinated graphene grating metasurface for terahertz dark state excitation. Nanotechnology 2023, 34, 185702. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Liu, W.; Li, Z.; Cheng, H.; Tian, J.; Chen, S. Multi-band on-chip photonic spin hall effect and selective excitation of whispering gallery modes with metasurface-integrated microcavity. Opt. Lett. 2021, 46, 3528–3531. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhao, M.; Wang, J.; Zi, J. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics 2020, 14, 623–628. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Yan, S.; Xu, X.; Zhu, S. Generation and conversion dynamics of dual bessel beams with a photonic spin-dependent dielectric metasurface. Phys. Rev. Appl. 2021, 15, 14059. [Google Scholar] [CrossRef]
- Chen, C.; Gao, S.; Xiao, X.; Ye, X.; Li, T. High efficient metasurface quarter-wave plate with wavefront engineering. Adv. Photonics Res. 2020, 2, 2000154. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Kan, Q.; Ye, J.; Feng, S.; Sun, W.; Han, P.; Qu, S.; Zhang, Y. Spin-selected focusing and imaging based on metasurface lens. Opt. Express 2015, 23, 26434. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhang, R.; Sheng, Z.Q.; Qu, J. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge. Opt. Express 2019, 27, 23959–23969. [Google Scholar] [CrossRef]
- Chen, M.; Gao, W.; Liu, H.; Teng, C.; Deng, S.; Deng, H.; Yuan, L. Polarization controllable generation of flat superimposed OAM states based on metasurface. Opt. Express 2019, 27, 20133–20144. [Google Scholar] [CrossRef] [PubMed]
- Sontag, A.; Noyan, M.A.; Kikkawa, J.M. High purity orbital angular momentum of light. Opt. Express 2022, 30, 43513–43521. [Google Scholar] [CrossRef] [PubMed]
- An, X.Q.; Song, H.S.; Zeng, X.Y.; Gu, M.N.; Jiang, Z.S.; He, C.W.; Liu, G.Y.; Cheng, C.F.; Zhang, Y.Q. Arbitrary superposition of plasmonic orbital angular momentum states with nanostructures. Opt. Lett. 2022, 47, 2032–2035. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Z.; Zhang, Y.; Cheng, H.; Tian, J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 2018, 6, 1800104. [Google Scholar] [CrossRef]
- Tian, K.; Wang, Z. Propagation properties of finite Airy beams on curved surfaces. Opt. Express 2022, 30, 5274–5282. [Google Scholar] [CrossRef]
- Zhang, S.; Huo, P.; Wang, Y.; Li, M.; Zhang, C.; Xu, T. Generation of achromatic auto-focusing airy beam for visible light by an all-dielectric metasurface. J. Appl. Phys. 2022, 131, 43104. [Google Scholar] [CrossRef]
- Li, T.; Li, Z.; Chen, S.; Zhou, L.; Zhang, N.; Wei, X.; Song, G.; Gan, Q.; Zu, Y. Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization. Appl. Phys. Lett. 2019, 114, 21107. [Google Scholar] [CrossRef]
- Gao, Y.J.; Xiong, X.; Wang, Z.; Chen, F.; Wang, M. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation. Phys. Rev. X 2020, 10, 31035. [Google Scholar] [CrossRef]
- Li, H.; Hao, W.; Yin, X.; Chen, S.; Chen, L. Broadband generation of airy beams with hyperbolic metamaterials. Adv. Opt. Mater. 2019, 7, 1900493. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J. Metasurface-Empowered Optical Multiplexing and Multifunction. Adv. Mater. 2020, 32, 1805912. [Google Scholar] [CrossRef]
- You, O.; Bai, B.; Wu, X.; Zhu, Z.; Wang, Q. A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles. Opt. Lett. 2015, 40, 5486–5489. [Google Scholar] [CrossRef]
- Wang, W.P.; Dong, H.; Shi, Z.Y.; Leng, Y.X.; Li, R.X.; Xu, Z.Z. Collimated particle acceleration by vortex laser-induced self-structured “plasma lens”. Appl. Phys. Lett. 2022, 121, 214102. [Google Scholar] [CrossRef]
- Zhang, F.; Zeng, Q.; Pu, M.; Wang, Y.; Guo, Y.; Li, X.; Ma, X.; Luo, X. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics 2020, 9, 2829–2837. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, Y.; Li, X.; Pu, M.; Gao, P.; Jin, J.J.; Ma, X.; Luo, X. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface. Adv. Opt. Mater. 2019, 7, 1900503. [Google Scholar] [CrossRef]
- Fan, Q.; Zhu, W.; Liang, Y.; Huo, P.; Zhang, C.; Agrawal, A.; Huang, K.; Luo, X.; Lu, Y.; Qiu, C.; et al. Broadband Generation of Photonic Spin-Controlled Arbitrary Accelerating Light Beams in the Visible. Nano Lett. 2019, 19, 1158–1165. [Google Scholar] [CrossRef]
- Ma, X.; Guo, Y.; Pu, M.; Jin, J.J.; Luo, X. Tunable optical hooks in the visible band based on ultramilhin metalenses. Ann. Der Phys. 2019, 532, 1900396. [Google Scholar] [CrossRef]
- Epstein, I.; Remez, R.; Tsur, Y.; Arie, A. Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media. Optica 2016, 3, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qu, Y.; Ullah, H.; Zhang, B.; Zhang, Z. Controllable multiple plasmonic bending beams via polarization of incident waves. Opt. Express 2017, 25, 29659–29666. [Google Scholar] [CrossRef]
- Wang, Y.K.; Qin, Y.; Zhang, Z.Y. Broadband Extraordinary Optical Transmission Through Gold Diamond-Shaped Nanohole Arrays. IEEE. Photonics J. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Yang, H.; Jin, G. Manipulating surface plasmon polaritons with m-shaped nanoslit array via polarized incident waves. EPL 2019, 127, 25001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, L.; Li, X.; Li, X.; Li, H. Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength. Photonics 2023, 10, 758. https://doi.org/10.3390/photonics10070758
Zhang H, Wang L, Li X, Li X, Li H. Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength. Photonics. 2023; 10(7):758. https://doi.org/10.3390/photonics10070758
Chicago/Turabian StyleZhang, Hang, Liang Wang, Xueli Li, Xiaoming Li, and Hui Li. 2023. "Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength" Photonics 10, no. 7: 758. https://doi.org/10.3390/photonics10070758
APA StyleZhang, H., Wang, L., Li, X., Li, X., & Li, H. (2023). Tunable Multiple Surface Plasmonic Bending Beams into Single One by Changing Incident Light Wavelength. Photonics, 10(7), 758. https://doi.org/10.3390/photonics10070758