Generation of Flat Terahertz Noise by Mixing Incoherent Light Fields
Abstract
:1. Introduction
2. Theoretical Principle
3. Results and Discussion
3.1. Experimental Setup
3.2. Experimental Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, C.; Chen, Y. Propagation modeling for wireless communications in the terahertz band. IEEE Commun. Mag. 2018, 56, 96–101. [Google Scholar] [CrossRef]
- Minoru, F. Overview of sub-terahertz communication and 300 GHz CMOS transceivers. IEICE Electron. Express 2021, 18, 2002. [Google Scholar]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Gonzalez-Guerrero, L.; Shams, H.; Fatadin, I.; Fice, M.J.; Naftaly, M.; Seeds, A.J.; Renaud, C.C. Comparison of Optical Single Sideband Techniques for THz-Over-Fiber Systems. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 98–105. [Google Scholar] [CrossRef]
- Song, H.J.; Lee, N. Terahertz communications: Challenges in the next decade. IEEE Trans. Terahertz Sci. Technol. 2021, 12, 105–117. [Google Scholar] [CrossRef]
- Božanić, M.; Sinha, S. Emerging transistor technologies capable of terahertz amplification: A way to re-engineer terahertz radar sensors. Sensors 2019, 19, 2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Chang, T.; Wang, Z.; Cui, H. Three-Dimensional Terahertz Continuous Wave Imaging Radar for Nondestructive Testing. IEEE Access 2020, 8, 144259–144276. [Google Scholar] [CrossRef]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef]
- Chi, T.; Huang, M.; Li, S.; Wang, H. A packaged 90-to-300 GHz transmitter and 115-to-325 GHz coherent receiver in CMOS for full-band continuous-wave mm-wave hyperspectral imaging. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 5 February 2017; p. 16724546. [Google Scholar]
- Zhang, Z.; Qi, P.; Guo, L.; Zhang, N.; Lin, L.; Liu, W. Review on Super-Resolution Near-Field Terahertz Imaging Methods. Acta Opt. Sin. 2023, 43, 0600001. [Google Scholar]
- Singh, R.; Cao, W.; Al-Naib, I.; Cong, L.; Withayachumnankul, W.; Zhang, W. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett. 2014, 105, 171101. [Google Scholar] [CrossRef] [Green Version]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [Green Version]
- Javadi, E.; But, D.B.; Ikamas, K.; Zdanevicius, J.; Knap, W.; Lisauskas, A. Sensitivity of Field-Effect Transistor-Based Terahertz Detectors. Sensors 2021, 21, 2909. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef] [PubMed]
- Degl’Innocenti, R.; Lin, H.; Navarro-Cía, M. Recent progress in terahertz metamaterial modulators. Nanophotonics 2022, 11, 1485–1514. [Google Scholar] [CrossRef]
- Wang, B.X.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y. Military Application of Terahertz Technology in the Future Ground-Air Integrative Battlefield. Ship Electron. Eng. 2020, 40, 9–11. [Google Scholar]
- Strąg, M.; Świderski, W. Non-destructive inspection of military-designated composite materials with the use of Terahertz imaging. Compos. Struct. 2023, 306, 116588. [Google Scholar] [CrossRef]
- Orlando, D. A novel noise jamming detection algorithm for radar applications. IEEE Signal Process Lett. 2016, 24, 206–210. [Google Scholar] [CrossRef]
- Li, D.; Minoia, G.; Repossi, M.; Baldi, D.; Temporiti, E.; Mazzanti, A.; Svelto, F. A low-noise design technique for high-speed CMOS optical receivers. IEEE J. Solid-State Circuits 2014, 49, 1437–1447. [Google Scholar] [CrossRef]
- Hsiao, H.F.; Tu, C.H.; Chang, D.C.; Juang, Y.Z. Noise figure verification using cold-source and Y-factor technique for amplifier and down-converted mixer. In Proceedings of the Asia-Pacific Microwave Conference, Sendai, Japan, 4 November 2014; pp. 901–903. [Google Scholar]
- Ahmed, A.R.; Lee, D.H.; Yeom, K.W. On-wafer noise parameters measurement using an extended six-port network and conventional noise figure analyzer. Int. J. Microw. Wirel. Technol. 2017, 9, 821–829. [Google Scholar] [CrossRef]
- Shahriar, C.; Pan, M.L.; Lichtman, M.; Clancy, T.C.; McGwier, R.; Tandon, R.; Sodagari, S.; Reed, J.H. PHY-layer resiliency in OFDM communications: A tutorial. Int. J. Microw. Wirel. Technol. 2014, 17, 292–314. [Google Scholar] [CrossRef]
- Song, H.J.; Shimizu, N.; Furuta, T.; Wakatsuki, A.; Nagatuma, T. Photonic generation of sub-terahertz noises and its application to spectroscopy measurement. In Proceedings of the 38th European Microwave Conference, Amsterdam, The Netherlands, 27 October 2008; p. 10414969. [Google Scholar]
- Nagatsuma, T.; Kumashiro, T.; Fujimoto, Y.; Taniguchi, K.; Ajito, K.; Kukutsu, N.; Furuta, T.; Wakatsuki, A.; Kado, Y. Millimeter-wave imaging using photonics-based noise source. In Proceedings of the 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Republic of Korea, 21 September 2009; p. 10976884. [Google Scholar]
- Fujishima, M. Future of 300 GHz band wireless communications and their enabler, CMOS transceiver technologies. Jpn. J. Appl. Phys. 2021, 60, SB0803. [Google Scholar] [CrossRef]
- Rubio-Cidre, G.; Badolato, A.; Ubeda-Medina, L.; Grajal, J.; Mencia-Oliva, B.; Dorta-Naranjo, B. DDS-based signal-generation architecture comparison for an imaging radar at 300 GHz. IEEE Trans. Instrum. Meas. 2015, 64, 3085–3098. [Google Scholar] [CrossRef]
- Yi, L.; Iwamoto, K.; Yamamoto, T.; Ayano, F.; Rolland, A.; Kuse, N.; Fermann, M.; Li, Y.; Nagatsuma, T. 300-GHz-band wireless communication using a low phase noise photonic source. Int. J. Microw. Wirel. Technol. 2020, 12, 551–558. [Google Scholar] [CrossRef]
- Seo, M.; Urteaga, M.; Young, A.; Jain, V.; Griffith, Z.; Hacker, J.; Rowell, P.; Pierson, R.; Rodwell, M. >300GHz fixed-frequency and voltage-controlled fundamental oscillators in an InP DHBT process. In Proceedings of the IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23 May 2021; pp. 272–275. [Google Scholar]
- Pepe, D.; Barnett, C.; D’Amore, G.; Zito, D. On-chip millimeter-wave cold-source noise figure measurements with PNA-X. IEEE Trans. Instrum. Meas. 2017, 66, 3399–3401. [Google Scholar] [CrossRef]
- Chen, C.H.; Wang, Y.L.; Bakr, M.H.; Zeng, Z. Novel noise parameter determination for on-wafer microwave noise measurements. IEEE Trans. Instrum. Meas. 2008, 57, 2462–2471. [Google Scholar] [CrossRef]
- Tiemeijer, L.F.; Havens, R.J.; Kort, R.; Scholten, A.J. Improved Y-factor method for wide-band on-wafer noise-parameter measurements. IEEE Trans. Microw. Theory Tech. 2005, 53, 2917–2925. [Google Scholar] [CrossRef]
- Arslan, S.; Yıldırım, B.S. A broadband microwave noise generator using zener diodes and a new technique for generating white noise. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 329–331. [Google Scholar] [CrossRef]
- Forstén, H.; Saijets, J.H.; Kantanen, M.; Varonen, M.; Kaynak, M.; Piironen, P. Millimeter-wave amplifier-based noise sources in SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech. 2021, 69, 4689–4696. [Google Scholar] [CrossRef]
- Song, H.J.; Yaita, M. On-wafer noise measurement at 300 GHz using UTC-PD as noise source. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 578–580. [Google Scholar] [CrossRef]
- Ustinov, A.B.; Kondrashov, A.V.; Kalinikos, B.A. A microwave photonic generator of chaotic and noise signals. Tech. Phys. Lett. 2016, 42, 403–406. [Google Scholar] [CrossRef]
- Beland, P.; Labonte, S.; Roy, L.; Stubbs, M. A novel on-wafer resistive noise source. IEEE Microw. Guided Wave Lett. 1999, 9, 227–229. [Google Scholar] [CrossRef]
- Goncalves, J.C.A.; Quemerais, T.; Gloria, D.; Avenier, G.; Lepilliet, S.; Ducournau, G.; Gaquière, C.; Danneville, F. A 130 to 170 GHz integrated noise source based on avalanche silicon Schottky diode in BiCMOS 55 nm for in-situ noise characterization. In Proceedings of the International Conference of Microelectronic Test Structures, Grenoble, France, 27 March 2017; p. 16970484. [Google Scholar]
- Ehsan, N.; Piepmeier, J.; Solly, M.; Macmurphy, S.; Lucey, J.; Wollack, E. A robust waveguide millimeter-wave noise source. In Proceedings of the European Microwave Conference, Paris, France, 7 September 2015; p. 15649195. [Google Scholar]
- Ghanem, H.; Lépilliet, S.; Danneville, F.; Ducournau, G. 300-GHz intermodulation/noise characterization enabled by a single THz photonics source. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1013–1016. [Google Scholar] [CrossRef]
- Song, H.J.; Shimizu, N.; Kukutsu, N.; Nagatsuma, T.; Kado, Y. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization. IEEE Trans. Microw. Theory Tech. 2008, 56, 2989–2997. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Y.; Wang, Y.; Liu, W.; Huang, H.; Huang, Y.; Qin, Y. Generation of 130–170 GHz flat millimeter-wave noise signal. Sci. Sin. Inform. 2022, 52, 2155–2162. [Google Scholar]
- Sun, Y.; Chen, Y.; Li, P.; Zinsou, R.; Wang, A.; Wang, Y. Flat Millimeter-Wave Noise Generation by Optically Mixing Multiple Wavelength-Sliced ASE Lights. IEEE Photonics Technol. Lett. 2021, 33, 1270–1273. [Google Scholar] [CrossRef]
- Vidal, B. Broadband photonic microwave noise sources. IEEE Photonics Technol. Lett. 2020, 32, 592–594. [Google Scholar] [CrossRef]
- Derickson, D. Fiber Optic Test and Measurement, 3rd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1998; pp. 169–220. [Google Scholar]
- Nzarathy, M.; Sorin, W.V.; Baney, D.M.; Newton, S.A. Spectral analysis of optical mixing measurements. J. Light. Technol. 1989, 7, 1083–1096. [Google Scholar]
- Ishibashi, T.; Muramoto, Y.; Yoshimatsu, T.; Ito, H. Unitraveling-carrier photodiodes for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 79–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, W.; Guo, Y.; Liu, J.; Jia, Z.; Sun, Y.; Wang, A.; Wang, Y. Generation of Flat Terahertz Noise by Mixing Incoherent Light Fields. Photonics 2023, 10, 778. https://doi.org/10.3390/photonics10070778
Zhang Y, Liu W, Guo Y, Liu J, Jia Z, Sun Y, Wang A, Wang Y. Generation of Flat Terahertz Noise by Mixing Incoherent Light Fields. Photonics. 2023; 10(7):778. https://doi.org/10.3390/photonics10070778
Chicago/Turabian StyleZhang, Youwen, Wenjie Liu, Ya Guo, Junbin Liu, Zhiwei Jia, Yuehui Sun, Anbang Wang, and Yuncai Wang. 2023. "Generation of Flat Terahertz Noise by Mixing Incoherent Light Fields" Photonics 10, no. 7: 778. https://doi.org/10.3390/photonics10070778
APA StyleZhang, Y., Liu, W., Guo, Y., Liu, J., Jia, Z., Sun, Y., Wang, A., & Wang, Y. (2023). Generation of Flat Terahertz Noise by Mixing Incoherent Light Fields. Photonics, 10(7), 778. https://doi.org/10.3390/photonics10070778