Influence of Image Processing Method on Wavefront Reconstruction Accuracy of Large-Aperture Laser
Abstract
:1. Introduction
2. System Structure and Parameter Measurement Methods
2.1. System Structure
2.2. Wavefront Reconstruction Algorithm
2.3. Filtering Method
2.4. Centroid Algorithm
3. Numerical Simulation
3.1. Image Filtering
3.2. Centroid Algorithm and Wavefront Reconstruction Accuracy
4. Discussion
4.1. Influence of Image Processing Methods on the Defocus Aberration
4.2. Influence of Image Processing Methods on the Mixed Aberration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Wang, S.; Xu, Y.; Dong, Y. Simulation and Analysis of Turbulent Optical Wavefront Based on Zernike Polynomials. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 1962–1966. [Google Scholar]
- Chimitt, N.; Chan, S.H. Simulating anisoplanatic turbulence by sampling intermodal and spatially correlated Zernike coefficients. Opt. Eng. 2020, 59, 083101. [Google Scholar] [CrossRef]
- Gangyu, W.; Zaihong, H.; Laian, Q.; Xu, J.; Yi, W. Simulation Analysis of a Wavefront Reconstruction of a Large Aperture Laser Beam. Sensors 2023, 23, 623. [Google Scholar]
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Hilda, F.; James, M.W. CCD noise removal in digital images. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2006, 15, 2676–2685. [Google Scholar]
- Feng, G.; Wang, Q.; Yang, P.; Zhang, J.; Wang, Z.; Liu, F. Diagnostic technology for temporal-spatial distribution of far-field high power laser beam profile. In Proceedings of the ICEOE 2011–2011 International Conference on Electronics and Optoelectronics, Dalian, China, 29–31 July 2011; pp. 30–33. [Google Scholar]
- Bernd, S.; Maik, L.; Klaus, M. Propagation of laser beams from Hartmann-Shack measurements. In Photonics North; SPIE: Bellingham, WA, USA, 2006; Volume 6343. [Google Scholar]
- Han, Y.N.; Hu, X.Q.; Dong, B. Iterative Extrapolation Method to Expand Dynamic Range of Shack-Hartmann Wavefront Sensors. Acta Opt. Sin. 2020, 40, 85–92. [Google Scholar]
- Chen, C.L.; Zhao, W.; Zhao, M.M.; Wang, S.; Zhao, C.S.; Yang, K.J. Sub-spot centroid extraction algorithm based on noise model transformation. Acta Opt. Sin. 2023, 43, 111–121. [Google Scholar]
- Lin, R.Z.; Yang, X.Y.; Zou, J.; Zhu, J.G.; Wu, B. Study on the center extraction precision of image photographed by CCD for large scale in spection. Transducer Microsyst. Technol. 2010, 29, 51–53. [Google Scholar]
- Tang, S.J.; Zhou, Z.F.; Guo, X.S.; Xiao, Y.C.; Xi’an Research Inst. of Hi-tec Hongqing Town, Xi’an 710025 China. Improved Iteration Centroid Algorithm Based on Linear CCD Light-spot Location. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 451–453. [Google Scholar]
- Cheng, J.; Xie, Y.; Zhou, S.; Lu, A.; Peng, X.; Liu, W. Improved Weighted Non-Local Mean Filtering Algorithm for Laser Image Speckle Suppression. Micromachines 2022, 14, 98. [Google Scholar] [CrossRef]
- Wang, B.; Xiang, Q. Fast Median Filter Image Processing Algorithm and Its FPGA Implementation. Front. Signal Process. 2020, 4, 88–94. [Google Scholar] [CrossRef]
- Li, G.P.; Chen, C.; Li, D.; Wu, L.; Zhang, B.; Yu, D.J.; Yin, W.H. Study on parameters measurement technology of high energy and high power laser. J. Appl. Opt. 2020, 41, 645–650. [Google Scholar]
- Guo, Y.; Zhong, L.; Min, L.; Wang, J.; Wu, Y.; Chen, K.; Wei, K.; Rao, C. Adaptive optics based on machine learning: A review. Opto-Electron. Adv. 2022, 5, 200082. [Google Scholar] [CrossRef]
- Himes, G.S.; Inigo, R.M. Centroid calculation using neural networks. Electron. Imaging 1992, 1, 73–87. [Google Scholar]
- Li, Z.; Li, X. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks. Opt. Express 2018, 26, 31675–31692. [Google Scholar] [CrossRef]
- Montera, D.A.; Welsh, B.M.; Roggemann, M.C.; Ruck, D.W. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation. Appl. Opt. 1996, 35, 5747–5757. [Google Scholar] [CrossRef]
- Wang, F.; Xie, X.; Ji, Y.F.; Duan, L.H.; Ye, X.S. Compound detector array for measuring intensity distribution of large caliber laser beam. Chin. Opt. 2012, 5, 658–662. [Google Scholar]
- Guan, W.L.; Tan, F.F.; Hou, Z.H. Wide Angle Array Detection Technology for High Power Density Laser. Acta Opt. Sin. 2022, 42, 159–166. [Google Scholar]
- Liu, M.S.; Wang, X.M.; Jing, W.B. Design of Parameters of Shack-Hartmann Wave-front Sensor for Laser-Beam Quality Meersurement. Acta Opt. Sin. 2013, 33, 302–306. [Google Scholar]
- Dai, F.Z.; Zheng, Y.Z.; Bu, Y.; Wang, X.Z. Zernike polynomials as a basis for modal fitting in lateral shearing interferometry: A discrete domain matrix transformation method. Appl. Opt. 2016, 55, 5884–5891. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yao, L.; Wu, S.; Wang, G. Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures. Photonics 2023, 10, 65. [Google Scholar] [CrossRef]
- Wei, P.; Li, X.Y.; Luo, X.; Li, J.F. Design and Verification of Digital Simulation Platform for Shack-Hartmann Wavefront Sensors. Chin. J. Lasers 2021, 48, 141–150. [Google Scholar]
- Noll, R.J. Zernike polynomials and atmospheric turbulence. JOSA 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Lardiere, O.; Conan, R.; Clare, R.; Bradley, C.; Hubin, N. Compared performance of different centroiding algorithms for high-pass filtered laser guide star Shack-Hartmann wavefront sensors. In Proceedings of the Conference on Adaptive Optics Systems II, Proceedings of SPIE, San Diego, CA, USA, 27 June–2 July 2010; Volume 7736. [Google Scholar]
- Li, X.; Li, X.; Wang, C. Optimum threshold selection method of centroid computation for Gaussian spot. In AOPC 2015: Image Processing and Analysis China; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
Parameter | Description | Parameter |
---|---|---|
Beam aperture/mm | 125 | Beam aperture/mm |
Beam wavelength/nm | 1064 | Beam wavelength/nm |
Lens size/mm | 20 | Lens size/mm |
Lens spacing/mm | 5 | Lens spacing/mm |
Duty factor | 0.8 | Duty factor |
Lens focal length/mm | 500 | Lens focal length/mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Hou, Z.; Qin, L.; Jing, X.; Li, Y.; Wu, Y. Influence of Image Processing Method on Wavefront Reconstruction Accuracy of Large-Aperture Laser. Photonics 2023, 10, 799. https://doi.org/10.3390/photonics10070799
Wang G, Hou Z, Qin L, Jing X, Li Y, Wu Y. Influence of Image Processing Method on Wavefront Reconstruction Accuracy of Large-Aperture Laser. Photonics. 2023; 10(7):799. https://doi.org/10.3390/photonics10070799
Chicago/Turabian StyleWang, Gangyu, Zaihong Hou, Laian Qin, Xu Jing, Yang Li, and Yi Wu. 2023. "Influence of Image Processing Method on Wavefront Reconstruction Accuracy of Large-Aperture Laser" Photonics 10, no. 7: 799. https://doi.org/10.3390/photonics10070799
APA StyleWang, G., Hou, Z., Qin, L., Jing, X., Li, Y., & Wu, Y. (2023). Influence of Image Processing Method on Wavefront Reconstruction Accuracy of Large-Aperture Laser. Photonics, 10(7), 799. https://doi.org/10.3390/photonics10070799