Experimental Comparison of Carrier Phase Recovery Algorithms for Uniform and Probabilistically Shaped QAM in a 324.1 Gb/S Fiber-mm-Wave Integration System at W-Band
Abstract
:1. Introduction
2. Algorithms Principle
2.1. Probabilistic Shaping (PS)
2.2. Viterbi–Viterbi Algorithm
2.3. Improved New Algorithm Based on VV (NVV)
2.4. BPS Algorithm
2.5. 2S-BPS Algorithm
3. Experiment Setup
4. Experiment Results
4.1. The Experiment Result of 16QAM and PS-16QAM
4.2. The Experiment Result of 64QAM and PS-64QAM
4.3. Computational Complexity Analysis
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Yu, J.; Wang, F.; Ji, X.; Yang, X.; Zheng, T.; Wang, Q.; Zhou, W.; Yu, J.; Zhao, F. Photonics millimeter wave bidirectional full-duplex communication based on polarization multiplexing. Opt. Lett. 2022, 47, 6389–6392. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhang, J.; Hua, B.C. Ultra-wideband fiber-THz-fiber seamless integration communication system toward 6G: Architecture, key techniques, and testbed implementation. Sci. China Inf. Sci. 2023, 66, 113301. [Google Scholar] [CrossRef]
- Lu, H.; Wu, H.; Li, C.; Ho, C.; Yang, Z.; Cheng, M.; Lu, C. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands. Opt. Express 2017, 25, 9743–9754. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Zhao, L.; Wang, K.; Wang, C.; Zhao, M.; Zhou, W.; Xiao, J. 1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band. J. Light. Technol. 2019, 37, 196–204. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, L.; Wang, S.; Li, W.; Qiao, M.; Lu, Z.; Idrees, N.M.; Pang, X.; Hu, H.; Zhang, X.; et al. 2 × 300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission. J. Light. Technol. 2020, 38, 4715–4721. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Lei, M.; Hua, B.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Huang, Y.; Yu, J.; et al. Demonstration of Real-time 125.516 Gbit/s Transparent Fiber-THz-Fiber Link Transmission at 360~430 GHz based on Photonic Down-Conversion. In Proceedings of the 2022 Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 6–10 March 2022. [Google Scholar]
- Zhang, J.; Zhu, M.; Lei, M.; Hua, B.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Wang, Y.; Huang, Y.; et al. Real-time demonstration of 103.125-Gbps fiber–THz–fiber 2 × 2 MIMO transparent transmission at 360–430 GHz based on photonics. Opt. Lett. 2022, 47, 1214–1217. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Chang, G. Photonics-Aided Millimeter-Wave Technologies for Extreme Mobile Broadband Communications in 5G. J. Light. Technol. 2020, 38, 366–378. [Google Scholar] [CrossRef]
- Rommel, S.; Dodane, D.; Grivas, E.; Cimoli, B.; Bourderionnet, J.; Feugnet, G.; Morales, A.; Pikasis, E.; Roeloffzen, C.; van Dijk, P.; et al. Towards a Scaleable 5G Fronthaul: Analog Radio-over-Fiber and Space Division Multiplexing. J. Light. Technol. 2020, 38, 5412–5422. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Dong, Z.; Zhang, J.; Chi, N.; Yu, J. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system. Opt. Lett. 2013, 38, 742–744. [Google Scholar] [CrossRef]
- Li, W.; Tan, Y.; Zhu, B.; Wang, F.; Wang, Y.; Ding, J.; Wang, K.; Zhao, L.; Zhou, W.; Yu, J.; et al. 127.8 Gb/s OFDM-PDM-PS256QAM W-Band Signal Delivery over 10 km SMF-28 and 4.6 km Wireless Distance. In Proceedings of the European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022. [Google Scholar]
- Yu, J.; Li, X.; Zhang, J.; Xiao, J. 432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing. In Proceedings of the European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014. [Google Scholar]
- Dat, P.T.; Rottenberg, F.; Kanno, A.; Inagaki, K.; Louveaux, J.; Yamamoto, N.; Kawanishi, T. 132 Gb/s 3 × 3 Full MIMO Fiber-Wireless Seamless System in W Band Using WDM/PDM RoF Transmission. In Proceedings of the European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020. [Google Scholar]
- Puerta, R.; Yu, J.; Li, X.; Xu, Y.; Olmos, J.J.V.; Monroy, I.T. Single-Carrier Dual-Polarization 328-Gb/s Wireless Transmission in a D-Band Millimeter Wave 2 × 2 MU-MIMO Radio-Over-Fiber System. J. Light. Technol. 2018, 36, 587–593. [Google Scholar] [CrossRef]
- Kawanishi, T. THz and photonic seamless communications. J. Light. Technol. 2019, 37, 1671–1679. [Google Scholar] [CrossRef]
- Huang, P.; Xie, Z.; Hsieh, T.; Yu, S.; Wei, C.; Chi, S.; Lin, C. 3 × 3 MIMO 60-GHz Direct-Detection OFDM RoFMF System with Mitigation of Optical Carrier Power Fading. In Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco, CA, USA, 6–10 June 2021. [Google Scholar]
- Wang, X.; Zhang, Q.; Yu, J.; Xin, X.; Lu, K.; Gao, R.; Ren, J.; Tian, F.; Tian, Q.; Wang, C.; et al. Carrier phase recovery friendly probabilistic shaping scheme based on a quasi-Maxwell–Boltzmann distribution model. Opt. Lett. 2020, 45, 4883–4886. [Google Scholar] [CrossRef]
- Mello, D.A.A.; Barbosa, F.A.; Reis, J.D. Interplay of Probabilistic Shaping and the Blind Phase Search Algorithm. J. Light. Technol. 2018, 36, 5096–5105. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; He, J.; Zhou, Z.; He, J.; Shi, J. Probabilistic Amplitude Shaping for a 64-QAM OFDM W-Band RoF System. IEEE Photonics Technol. Lett. 2019, 31, 1076–1079. [Google Scholar] [CrossRef]
- Shao, Y.; Hong, Y.; Hu, Z.; Chen, L.K. Capacity maximization of owc systems via joint precoding and probabilistic shaping. IEEE Photonics Technol. Lett. 2019, 31, 1013–1016. [Google Scholar] [CrossRef]
- Wiegart, T.; Ros, F.D.; Yankov, M.P.; Steiner, F.; Gaiarin, S.; Wesel, R.D. Probabilistically shaped 4-pam for short-reach im/dd links with a peak power constraint. J. Light. Technol. 2021, 39, 400–405. [Google Scholar] [CrossRef]
- Barbosa, F.A.; Mello, D.A.A. Shaping Factor Detuning for Optimized Phase Recovery in Probabilistically-Shaped Systems. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 3–7 March 2019; OSA Technical Digest. Optica Publishing Group: San Diego, USA, 2019. [Google Scholar]
- Di Rosa, G.; Richte, A. Likelihood-Based Selection Radius Directed Equalizer with Time-Multiplexed Pilot Symbols for Probabilistically Shaped QAM. J. Light. Technol. 2021, 39, 6107–6119. [Google Scholar]
- Yan, Q.; Liu, L.; Hong, X. Blind Carrier Frequency Offset Estimation in Coherent Optical Communication Systems with Probabilistically Shaped M-QAM. J. Light. Technol. 2019, 37, 5856–5866. [Google Scholar] [CrossRef]
- Dris, S.; Alreesh, S.; Richter, A. Blind Polarization Demultiplexing and Equalization of Probabilistically Shaped QAM. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Liu, W.; Yang, T.; Chen, X.; You, J. Low-Complexity Frequency Offset Estimation for Probabilistically Shaped MQAM Coherent Optical Systems. IEEE Photonics J. 2022, 14, 3189993. [Google Scholar] [CrossRef]
- Lauinger, V.; Buchali, F.; Schmalen, L. Improving the Bootstrap of Blind Equalizers with Variational Autoencoders. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 5–9 March 2023; Technical Digest Series. Optica Publishing Group: Washington, DC, USA, 2023. [Google Scholar]
- Civelli, S.; Parente, E.; Forestieri, E.; Secondini, M. On the Nonlinear Shaping Gain With Probabilistic Shaping and Carrier Phase Recovery. J. Light. Technol. 2023, 41, 3046–3056. [Google Scholar] [CrossRef]
- He, Z.; Du, J.; Chen, X.; Shen, W.; Huang, Y.; Wang, C.; Xu, K.; He, Z. Machine learning aided inverse design for few-mode fiber weak-coupling optimization. Opt. Express 2020, 28, 21668–21681. [Google Scholar] [CrossRef]
- Tang, X.; Xu, H.; Bai, C.; Fan, Y.; Zhang, Y.; Yang, L.; Cao, L.; Sun, W.; Cui, N. Blind frequency offset estimation using the optimal decision threshold-assisted QPSK-partition method for probabilistically shaped MQAM system. Opt. Express 2022, 30, 37175–37192. [Google Scholar]
- Cao, F.; Gao, M.; Wang, P.; You, X.; Shen, G. Optimized blind equalization for probabilistically shaped high-order QAM signals. Chin. Opt. Lett. 2022, 20, 080601. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, C. Viterbi and Viterbi Algorithm based Phase Recovery for Probabilistically Shaped Signals. J. Light. Technol. 2021, 39, 1364–1370. [Google Scholar] [CrossRef]
- Nguyen, T.; Zhang, T.; Giacoumidis, E.; Ali, A.A.; Tan, M.; Harper, P.; Barry, L.; Ellis, A. Coupled Transceiver-Fiber Nonlinearity Compensation Based on Machine Learning for Probabilistic Shaping System. J. Light. Technol. 2021, 39, 388–399. [Google Scholar]
- Steiner, F.; Ros, F.; Yankov, M.; Böcherer, G.; Schulte, P.; Forchhammer, S.; Kramer, G. Experimental Verification of Rate Flexibility and Probabilistic Shaping by 4D Signaling. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 5–9 March 2018; OSA Technical Digest (online). Optica Publishing Group: San Diego, CA, USA, 2018. [Google Scholar]
- Diniz, J.; Fan, Q.; Ranzini, S.; Khan, F.; Da Ros, F.; Zibar, D.; Lau, A. Low-complexity carrier phase recovery based on principal component analysis for square-QAM modulation formats. Optics. Express 2019, 27, 15617–15626. [Google Scholar]
- Zhang, N.; Zhang, X.; Cui, N.; Li, X.; Xi, L.; Zhang, W. A Kalman Filter Based Carrier Phase Recovery Scheme for Probabilistic Shaping M-QAM System. In Proceedings of the Opto-Electronics and Communications Conference, Taipei, Taiwan, 4–8 October 2020. [Google Scholar]
- Di Rosa, G.; Richter, A. Low Complexity Blind Carrier Phase Recovery for Probabilistically Shaped QAM. IEEE Photonics Technol. Lett. 2020, 32, 1109–1112. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, L.K. Carrier Phase Recovery based on KL Divergence in Probabilistically Shaped Coherent Systems. J. Light. Technol. 2021, 39, 2684–2695. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, S.; Tang, M.; Zhang, Z.; Qin, Y. Maximum probability directed blind phase search for PS-QAM with variable shaping factors. Opt. Express 2022, 30, 550–562. [Google Scholar] [CrossRef]
- Yu, J.; Chi, N. Digital Signal Processing in High-Speed Optical Fiber Communication; Beijing Tsinghua University Press: Beijing, China, 2018; Volume 57. [Google Scholar]
- Seimetz, M. Performance of Coherent Optical Square-16-QAM-Systems based on IQ-Transmitters and Homodyne Receivers with Digital Phase Estimation. In Proceedings of the Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, CA, USA, 5–10 March 2006; Technical Digest (CD). Optica Publishing Group: San Diego, CA, USA, 2006. [Google Scholar]
- Wang, X.; Zhang, Q.; Xin, X.; Gao, R.; Lv, K.; Tian, Q.; Tian, F.; Wang, C.; Pan, X.; Wang, Y.; et al. Robust and Low-Complexity Principal Component-Based Phase Estimation Algorithm for Probabilistically Shaped Square-QAM Systems. J. Light. Technol. 2020, 38, 6153–6162. [Google Scholar] [CrossRef]
- Lagha, M.K.; Gerzaguet, R.; Bramerie, L.; Gay, M.; Chares, M.-L.; Peucheret, C.; Scalart, P. Blind Joint Polarization Demultiplexing and IQ Imbalance Compensation for 𝑀-QAM Coherent Optical Communications. J. Light. Technol. 2020, 38, 4213–4220. [Google Scholar] [CrossRef]
Format | Factor | Baud | Algorithm | Year | Reference |
---|---|---|---|---|---|
PS-64QAM | 0.2 | 50 | SPS | 2018 | [18] |
PS-64QAM | 0.25 | 28 | KF-CPR | 2020 | [36] |
PS-64QAM | 0.35 | / | PS-Aware + VV | 2020 | [37] |
PS-16QAM | 0.25 | 10 | KL | 2021 | [38] |
PS-64QAM | 0.35 | 32 | MPD-BPS | 2022 | [39] |
BPS | 2S-BPS | VV + ML | NVV | |
---|---|---|---|---|
Addition | N1BM + BM + 1 | N1BT + BT + 2 | 7N2 + 2 | N2 + 2 |
Multiplication | 2N1BM + 3BM | 2N1BT + 3BT | 10N2 + 2 | N2 + 4 |
Square root | 0 | 0 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, J.; Wang, Q.; Chen, J.; Luo, W.; Xiang, S.; Cai, Y.; Hua, B.; Lei, M.; Zou, Y.; et al. Experimental Comparison of Carrier Phase Recovery Algorithms for Uniform and Probabilistically Shaped QAM in a 324.1 Gb/S Fiber-mm-Wave Integration System at W-Band. Photonics 2023, 10, 927. https://doi.org/10.3390/photonics10080927
Zhang J, Zhang J, Wang Q, Chen J, Luo W, Xiang S, Cai Y, Hua B, Lei M, Zou Y, et al. Experimental Comparison of Carrier Phase Recovery Algorithms for Uniform and Probabilistically Shaped QAM in a 324.1 Gb/S Fiber-mm-Wave Integration System at W-Band. Photonics. 2023; 10(8):927. https://doi.org/10.3390/photonics10080927
Chicago/Turabian StyleZhang, Junhao, Jiao Zhang, Qingsong Wang, Jian Chen, Wei Luo, Shitong Xiang, Yuancheng Cai, Bingchang Hua, Mingzheng Lei, Yucong Zou, and et al. 2023. "Experimental Comparison of Carrier Phase Recovery Algorithms for Uniform and Probabilistically Shaped QAM in a 324.1 Gb/S Fiber-mm-Wave Integration System at W-Band" Photonics 10, no. 8: 927. https://doi.org/10.3390/photonics10080927
APA StyleZhang, J., Zhang, J., Wang, Q., Chen, J., Luo, W., Xiang, S., Cai, Y., Hua, B., Lei, M., Zou, Y., Tian, L., Chen, X., & Zhu, M. (2023). Experimental Comparison of Carrier Phase Recovery Algorithms for Uniform and Probabilistically Shaped QAM in a 324.1 Gb/S Fiber-mm-Wave Integration System at W-Band. Photonics, 10(8), 927. https://doi.org/10.3390/photonics10080927