Denoising of Laser Self-Mixing Interference by Improved Wavelet Threshold for High Performance of Displacement Reconstruction
Abstract
:1. Introduction
2. Improved Wavelet Threshold Denoising Function
3. Theoretical Simulation and Analysis
3.1. Simulation of Laser SMI Signals
3.2. Simulation of Different Wavelet Threshold Denoising
3.3. Comparison of Displacement Reconstruction for the Simulated SMI
4. Experiment of Improved Wavelet Threshold Denoising in SMI Signals
4.1. Laser SMI Experimental Setup and Results
4.2. Denoising for SMI Based on Wavelet Threshold Function
4.3. Comparison of Displacement Reconstruction for Experimental SMI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandrova, A.S.; Tzoganis, V.; Welsch, C.P. Laser diode self-mixing interferometry for velocity measurements. Opt. Eng. 2015, 54, 034104. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Huang, Z. Vibration measurement based on multiple Hilbert transform for self-mixing interferometry. Opt. Commun. 2019, 436, 192–196. [Google Scholar] [CrossRef]
- Zabit, U.; Bosch, T.; Bony, F. Adaptive transition detection algorithm for a self-mixing displacement sensor. IEEE Sens. J. 2009, 9, 1879–1886. [Google Scholar] [CrossRef]
- Donatia, S.; Norgiab, M. Overview of self-mixing interferometer applications to mechanical engineering. Opt. Eng. 2018, 57, 051506. [Google Scholar]
- Lu, L.; Yang, J.; Zhai, L.; Wang, R.; Cao, Z.; Yu, B. Self-mixing interference measurement system of a fiber ring laser with ultra-narrow linewidth. Opt. Express 2012, 20, 8598–8607. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; You, Y.; Wang, J.; Sun, J.; Zhang, L.; Xiong, L. Model of multiple mode gain competition in self-mixing laser diode. Optik 2023, 281, 170853. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, W.; Zhang, J.; Wang, X.; Zhu, H.; An, T.; Yu, X. Obtaining scalable fringe precision in self-mixing interference using an even-power fast algorithm. IEEE Photonics J. 2017, 9, 6803211. [Google Scholar]
- Donati, S. Developing self-mixing interferometry for instrumentation and measurements. Laser Photonics Rev. 2012, 6, 393–417. [Google Scholar] [CrossRef]
- Wang, X.F.; Yuan, Y.; Sun, L.; Gao, B.; Chen, P. Self-mixing interference displacement measurement under very weak feedback regime based on integral reconstruction method. Opt. Commun. 2019, 445, 236–240. [Google Scholar] [CrossRef]
- Bes, C.; Plantier, G.; Bosch, T. Displacement measurements using a self-mixing laser diode under moderate feedback. IEEE Trans. Instrum. Meas. 2006, 55, 1101–1105. [Google Scholar] [CrossRef]
- Giuliani, G.; Norgia, M.; Donati, S.; Bosch, T. Laser diode self-mixing technique for sensing applications. J. Opt. A Pure Appl. Opt. 2002, 4, S283–S294. [Google Scholar] [CrossRef]
- Yu, Y.; Xi, J.; Chicharo, J.F. Improving the performance in an optical feedback self-mixing interferometry system using digital signal pre-processing. In Proceedings of the 2007 IEEE International Symposium on Intelligent Signal Processing, Alcala de Henares, Spain, 3–5 October 2007. [Google Scholar]
- Sun, Y.; Yu, Y.G.; Xi, J.T. Wavelet transform based de-noising method for self mixing interferometry signals. Proc. SPIE 2012, 8351, 83510G. [Google Scholar]
- Yoshino, T.; Nara, M.; Mnatzakanian, S.; Lee, B.S.; Strand, T.C. Laser diode feedback interferometer for stabilization and displacement measurements. Appl. Opt. 1987, 26, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Fourier transform method for self-mixing interference signal analysis. Opt. Laser Technol. 2001, 33, 409–416. [Google Scholar] [CrossRef]
- Kou, K.; Wang, C.; Liu, Y. All-phase FFT based distance measurement in laser self-mixing interferometry. Opt. Laser Eng. 2021, 142, 106611. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.F.; Han, L.F. Laser self-mixing interference displacement measurement based on VMD and phase unwrapping. Opt. Commun. 2020, 456, 124588. [Google Scholar] [CrossRef]
- Hua, T.; Dai, K.; Zhang, X.; Yao, Z.; Wang, H.; Xie, K.; Feng, T.; Zhang, H. Optimal VMD-based signal denoising for laser radar via Hausdorff distance and wavelet transform. IEEE Access 2019, 7, 167997–168010. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhang, C.L.; Zhang, P.T. Denoising algorithm based on wavelet adaptive threshold. Phys. Procedia 2012, 24, 678–685. [Google Scholar]
- Bayer, F.M.; Kozakevicius, A.J.; Cintra, R.J. An iterative wavelet threshold for signal denoising. Signal Process. 2019, 162, 10–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, W.; Pan, Z.; Qin, J. Improved wavelet threshold for image de-noising. Front. Neurosci. 2019, 13, 39. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W.D.; Xiang, C.; Han, L.; Nie, H. A de-noising method using the improved wavelet threshold function based on noise variance estimation. Mech. Syst. Signal Process. 2018, 99, 30–46. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Zhang, M.; Zhao, Y.; Zou, J.; Chen, T. Phase-unwrapping algorithm combined with wavelet transform and Hilbert transform in self-mixing interference for individual microscale particle detection. Chin. Opt. Lett. 2023, 21, 041204. [Google Scholar] [CrossRef]
- Bernal, O.D.; Seat, H.C.; Zabit, U.; Surre, F.; Bosch, T. Robust fringe detection based on bi-wavelet transform for self-mixing displacement sensor. In Proceedings of the 2015 IEEE Sensors, Busan, Republic of Korea, 1–4 November 2015. [Google Scholar]
- Han, G.; Xu, Z. Electrocardiogram signal denoising based on a new improved wavelet thresholding. Rev. Sci. Instrum. 2016, 87, 084303. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y. Image denoising algorithm based on improved wavelet threshold function and median filter. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018. [Google Scholar]
- Zeng, Y.Q.; Zhang, B.C.; Zhao, W.; Xiao, S.; Zhang, G.; Ren, H.; Zhao, W.; Peng, Y.; Xiao, Y.; Lu, Y.; et al. Magnetic resonance image denoising algorithm based on cartoon, texture, and residual parts. Comput. Math. Method Med. 2020, 2020, 1405647. [Google Scholar] [CrossRef]
- Lu, J.Y.; Lin, H.; Ye, D.; Zhang, Y. A new wavelet threshold function and denoising application. Math. Probl. Eng. 2016, 2016, 3195492. [Google Scholar]
- Yang, K.; Deng, C.X.; Chen, Y.; Xu, L. The de-noising method of threshold function based on wavelet. In Proceedings of the 2014 International Conference on Wavelet Analysis and Pattern Recognition, Lanzhou, China, 13–16 July 2014. [Google Scholar]
- Kliese, R.; Taimre, T.; ABakar, A.A.; Lim, Y.L.; Bertling, K.; Nikolić, M.; Perchoux, J.; Bosch, T.; Rakić, A.D. Solving self-mixing equations for arbitrary feedback levels: A concise algorithm. Appl. Opt. 2014, 53, 3723–3736. [Google Scholar] [CrossRef]
- Wang, H.; Ruan, Y.X.; Yu, Y.G.; Guo, Q.H.; Xi, J.T.; Tong, J. A new algorithm for displacement measurement using self-mixing interferometry with modulated injection current. IEEE Access 2020, 8, 123253–123261. [Google Scholar] [CrossRef]
Parameter | Description | Unit | Value |
---|---|---|---|
Lext | Distance from the laser to the object | mm | 2 |
L | Cavity length of diode laser | mm | 0.5 |
α | Linewidth enhancement factor | 4.15 | |
C | Feedback parameter | 0.8 | |
λ | Wavelength of the laser diode | nm | 650 |
A | Vibration amplitude of external object | μm | 2 |
t | Simulation time | s | 0.2 |
f | External object vibration frequency | Hz | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; You, Y.; Li, S.; He, D.; Sun, J.; Wang, J.; Hou, D. Denoising of Laser Self-Mixing Interference by Improved Wavelet Threshold for High Performance of Displacement Reconstruction. Photonics 2023, 10, 943. https://doi.org/10.3390/photonics10080943
Liu H, You Y, Li S, He D, Sun J, Wang J, Hou D. Denoising of Laser Self-Mixing Interference by Improved Wavelet Threshold for High Performance of Displacement Reconstruction. Photonics. 2023; 10(8):943. https://doi.org/10.3390/photonics10080943
Chicago/Turabian StyleLiu, Hui, Yaqiang You, Sijia Li, Dan He, Jian Sun, Jingwei Wang, and Dong Hou. 2023. "Denoising of Laser Self-Mixing Interference by Improved Wavelet Threshold for High Performance of Displacement Reconstruction" Photonics 10, no. 8: 943. https://doi.org/10.3390/photonics10080943
APA StyleLiu, H., You, Y., Li, S., He, D., Sun, J., Wang, J., & Hou, D. (2023). Denoising of Laser Self-Mixing Interference by Improved Wavelet Threshold for High Performance of Displacement Reconstruction. Photonics, 10(8), 943. https://doi.org/10.3390/photonics10080943