Optimizing Self-Seeded Perfluorooctane SBS Compressor Configurations to Achieve ~90 ps High-Energy Pulses
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Optimization of Double-Pass Side Diode-Pumped Nd:YAG Amplifier
3.2. SBS Compressor with Plane Feedback Mirror and Phase-Conjugated Amplifier
3.3. SBS Compressor with Spherical Mirror and Phase-Conjugated Amplifier
3.4. SBS Compressor with Variable Pulse Splitting and Phase-Conjugated Amplifier
3.5. Comparison of SBS Compressor Configurations
3.6. Beam Characterization of Phase-Conjugated Amplifier
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGarry, J.F.; Hoffman, E.D.; Degnan, J.J.; Cheek, J.W.; Clarke, C.B.; Diegel, I.F. NASA’s satellite laser ranging systems for the twenty-first century. J. Geod. 2018, 93, 2249–2262. [Google Scholar] [CrossRef] [PubMed]
- Sugioka, K. Progress in ultrafast laser processing and future prospects. Nanophotonics 2017, 6, 393–413. [Google Scholar] [CrossRef]
- Wu, D.C.; Goldman, M.P.; Wat, H.; Chan, H.L. A systematic review of picosecond laser in dermatology: Evidence and recommendations. Lasers Surg. Med. 2020, 53, 9–49. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, Y.; Zhu, W. Clinical Application Progress of Picosecond Laser. J. Pract. Dermatol. 2019, 12, 223–226. [Google Scholar]
- Cole, B.; Goldberg, L.; Hays, A.D. High-efficiency 2 μm Tm:YAP Laser with a Compact Mechanical Q-Switch. Opt. Lett. 2018, 43, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Keller, U.; Weingarten, K.J.; Kartner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Fluck, R.; Honninger, C.; Matuschek, N.; der Au, J.A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453. [Google Scholar] [CrossRef]
- Liu, L.; Li, N.; Liu, Y.; Wang, C.; Wang, W.T.; Huang, H.Z. 1 kHz, 430 mJ, sub-nanosecond MOPA laser system. Opt. Express 2021, 29, 22008–22017. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wang, Y.; Bai, Z.; Li, Y.; Yu, Y.; Lu, Z. Developments of Picosecond Lasers Based on Stimulated Brillouin Scattering Pulse Compression. Front. Phys. 2021, 9, 747272. [Google Scholar] [CrossRef]
- Wang, H.L.; Cha, S.; Kong, H.J.; Wang, Y.L.; Lu, Z.W. Rotating Off-Centered Lens in SBS Phase Conjugation Mirror for High-Repetition-Rate Operation. Opt. Express 2019, 27, 9895–9905. [Google Scholar] [CrossRef] [PubMed]
- Tsubakimoto, K.; Yoshida, H.; Miyanaga, N. High-average-power green Laser Using Nd:YAG Amplifier with Stimulated Brillouin Scattering Phase-Conjugate Pulse-Cleaning Mirror. Opt. Express 2016, 24, 12557–12564. [Google Scholar] [CrossRef] [PubMed]
- Andreev, N.F.; Grishin, E.A.; Kulagin, O.; Rodin, A. Picosecond Lasers with Brillouin and Raman Pulse Compression. In Proceedings of the International Conference ‘High Power Laser Beams (HPLB-2006)’, Nizhny Novgorod, Russia, 3–8 July 2006. [Google Scholar]
- Dement’ev, A.S.; Demin, I.; Murauskas, E.; Slavinskis, S. Compression of pulses during their amplification in the field of a focused counterpropagating pump pulse of the same frequency and width in media with electrostriction nonlinearity. Quantum Electron. 2011, 41, 153–159. [Google Scholar] [CrossRef]
- Marcus, G.; Pearl, S.; Pasmanik, G. Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm. J. Appl. Phys. 2008, 103, 103–105. [Google Scholar] [CrossRef]
- Dane, C.B.; Neuman, W.A.; Hackel, L.A. High-energy SBS pulse compression. IEEE J. Quantum Electron. 1994, 30, 1907–1915. [Google Scholar] [CrossRef]
- Schiemann, S.; Ubachs, W.; Hogervorse, W. Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. IEEE J. Quantum Electron. 1997, 33, 358–366. [Google Scholar] [CrossRef]
- Gaižauskas, E.; Piskarskas, A.; Smilgeavičius, V.; Staliūnas, K. Space and time structure of ultrashort pulses formed by opposed stimulated scattering of laser beams. Sov. J. Quantum Electron. 1987, 17, 650–653. [Google Scholar] [CrossRef]
- Guo, S.F.; Lu, Q.S.; Cheng, X.A.; Zhou, P.; Deng, S.Y.; Yin, Y. Influence of stokes component in reflected light on stimulated Brillouin scattering process. Acta Phys. Sin. 2004, 53, 1831–1835. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, Y.; Lu, Z.; Yuan, H.; Zheng, Z.; Li, S.; Chen, Y.; Liu, Z.; Cui, C.; Wang, H.; et al. High compact, high quality single longitudinal mode hundred picoseconds laser based on stimulated Brillouin scattering pulse compression. Appl. Sci. 2016, 6, 29. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
LD central wavelength | 802.6 nm |
LD emission pulse width | 260 μs (FWHM) |
LD current | 140 A |
LD voltage | 49 V |
Cooling temperature | 36 °C |
SBS Compressor Configuration | τmin [ps] | Nτ | Emax [mJ] | Rmax [%] |
---|---|---|---|---|
without self-seeding | 145 | 7.2 | 4.9 | 30.8 |
with plane feedback mirror | 93 | 11.3 | 9.5 | 57.7 |
with spherical mirror | 98 | 10.7 | 7.6 | 46.4 |
with variable pulse splitting | 103 | 10.2 | 5.6 | 34.8 |
Measurement Conditions | Beam Propagation Distance [mm] | M2 | Astig-matism | Ellipti-city | Beam Pointing [%] | ||||
---|---|---|---|---|---|---|---|---|---|
370 | 400 | 430 | 460 | 490 | |||||
Nd:YAG mini-laser output | 1.39 | 0.39 | 1.22 | 1.28 | |||||
After the 2nd pass of the amplifier | 1.41 | 0.35 | 1.13 | 1.99 | |||||
Compressed output pulses | 1.23 | 0.04 | 1.03 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodin, A.M.; Černeckytė, A.; Mackonis, P.; Petrulėnas, A. Optimizing Self-Seeded Perfluorooctane SBS Compressor Configurations to Achieve ~90 ps High-Energy Pulses. Photonics 2023, 10, 1060. https://doi.org/10.3390/photonics10091060
Rodin AM, Černeckytė A, Mackonis P, Petrulėnas A. Optimizing Self-Seeded Perfluorooctane SBS Compressor Configurations to Achieve ~90 ps High-Energy Pulses. Photonics. 2023; 10(9):1060. https://doi.org/10.3390/photonics10091060
Chicago/Turabian StyleRodin, Aleksej M., Augustė Černeckytė, Paulius Mackonis, and Augustinas Petrulėnas. 2023. "Optimizing Self-Seeded Perfluorooctane SBS Compressor Configurations to Achieve ~90 ps High-Energy Pulses" Photonics 10, no. 9: 1060. https://doi.org/10.3390/photonics10091060
APA StyleRodin, A. M., Černeckytė, A., Mackonis, P., & Petrulėnas, A. (2023). Optimizing Self-Seeded Perfluorooctane SBS Compressor Configurations to Achieve ~90 ps High-Energy Pulses. Photonics, 10(9), 1060. https://doi.org/10.3390/photonics10091060