Airy Transform of the New Power-Exponent-Phase Vortex Beam
Abstract
:1. Introduction
2. Theory
3. Simulation Results
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coullet, P.; Gil, L.; Rocca, F. Optical vortices. Opt. Commun. 1989, 73, 403–408. [Google Scholar] [CrossRef]
- Padgett, M.J. Orbital angular momentum 25 years on [Invited]. Opt. Express 2017, 25, 11265–11274. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, M.; Battipede, F.; Lugiato, L.; Penna, V.; Prati, F.; Tamm, C.; Weiss, C. Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A 1991, 43, 5090. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Gahagan, K.; Swartzlander, G.J. Optical vortex trapping of particles. Opt. Lett. 1996, 21, 827–829. [Google Scholar] [CrossRef]
- Barreiro, J.T.; Wei, T.-C.; Kwiat, P.G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 2008, 4, 282–286. [Google Scholar] [CrossRef]
- Wang, J. Advances in communications using optical vortices. Photonics Res. 2016, 4, B14–B28. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Lavery, M.P.; Peuntinger, C.; Günthner, K.; Banzer, P.; Elser, D.; Boyd, R.W.; Padgett, M.J.; Marquardt, C.; Leuchs, G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv. 2017, 3, e1700552. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Otte, E.; Denz, C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev. 2020, 7, 041308. [Google Scholar] [CrossRef]
- Qiao, Z.; Wan, Z.; Xie, G.; Wang, J.; Qian, L.; Fan, D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX 2020, 1, 13. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, W.-G.; Li, Z.-M.; Hu, C.-Q.; Yan, Z.-Q.; Jiao, Z.-Q.; Gao, J.; Cao, M.-M.; Sun, K.; Jin, X.-M. Underwater transmission of high-dimensional twisted photons over 55 meters. PhotoniX 2020, 1, 5. [Google Scholar] [CrossRef]
- Lavery, M.P.J.; Speirits, F.C.; Barnett, S.M.; Padgett, M.J. Detection of a Spinning Object Using Light’s Orbital Angular Momentum. Science 2013, 341, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Mait, J.N.; Euliss, G.W.; Athale, R.A. Computational imaging. Adv. Opt. Photonics 2018, 10, 409–483. [Google Scholar] [CrossRef]
- Qiu, X.; Li, F.; Zhang, W.; Zhu, Z.; Chen, L. Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica 2018, 5, 208–212. [Google Scholar] [CrossRef]
- Nicolas, A.; Veissier, L.; Giner, L.; Giacobino, E.; Maxein, D.; Laurat, J. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 2014, 8, 234–238. [Google Scholar] [CrossRef]
- Ding, D.-S.; Zhang, W.; Zhou, Z.-Y.; Shi, S.; Xiang, G.-Y.; Wang, X.-S.; Jiang, Y.-K.; Shi, B.-S.; Guo, G.-C. Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble. Phys. Rev. Lett. 2015, 114, 050502. [Google Scholar] [CrossRef]
- Wen, Y.; Chremmos, I.; Chen, Y.; Zhang, Y.; Yu, S. Arbitrary Multiplication and Division of the Orbital Angular Momentum of Light. Phys. Rev. Lett. 2020, 124, 213901. [Google Scholar] [CrossRef]
- Mathieu, P.; Simon, Y. Phenomenological Theory of Vortex Motion in Type-II Superconductors. Europhys. Lett. 1988, 5, 67. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, J.; Lu, X.; Wang, Z.; Zhao, C.; Cai, Y. Review on fractional vortex beam. Nanophotonics 2022, 11, 241–273. [Google Scholar] [CrossRef]
- Orlov, S.; Regelskis, K.; Smilgevičius, V.; Stabinis, A. Propagation of Bessel beams carrying optical vortices. Opt. Commun. 2002, 209, 155–165. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Peng, T.; Xie, G.; Gan, X.; Zhao, J. Spiral autofocusing Airy beams carrying power-exponent-phase vortices. Opt. Express 2014, 22, 7598–7606. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Z.; Lu, X.; Zhao, C.; Cai, Y. Topological Charge Measurement of a Partially Coherent Vortex Beam Using Dual Cylindrical Lenses with an Arbitrary Angle. Photonics 2023, 10, 444. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.; Wang, Z.; Zhao, X.; Lu, X.; Cai, Y.; Zhao, C. Coherence singularity and evolution of partially coherent Bessel–Gaussian vortex beams. Opt. Express 2023, 31, 9308–9318. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Lu, X.; Zhao, X.; Hoenders, B.J.; Zhao, C.; Cai, Y. Statistical properties of a partially coherent vector beam with controllable spatial coherence, vortex phase, and polarization. Opt. Express 2022, 30, 29923–29939. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Shen, D.; Wang, K.; Zhao, D. Generation and propagation of a new kind of power-exponent-phase vortex beam. Opt. Express 2019, 27, 24642–24653. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, M.; Zhang, M.; Dou, J.; Zhao, J.; Li, B.; Hu, Y. Propagation properties of rotationally-symmetric power-exponent-phase vortex beam through oceanic turbulence. Opt. Laser Technol. 2023, 159, 109024. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, W.; Dou, J.; Jing, Q.; Liu, J.; Hu, Y. Propagation Properties of Centrosymmetric Power-Exponent-Phase Vortex Beam Through Oceanic Turbulence. SSRN 2022. preprint. [Google Scholar] [CrossRef]
- Siviloglou, G.; Broky, J.; Dogariu, A.; Christodoulides, D. Observation of accelerating Airy beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zhou, G.; Chen, R. Analytical study of the self-healing property of Airy beams. Phys. Rev. A 2012, 85, 013815. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, K.; Lu, X. The optical Airy transform and its application in generating and controlling the Airy beam. Opt. Commun. 2012, 285, 4840–4843. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.-M.; Xu, Y.-Q.; Zhou, G.-Q. Airy transformation of Lorentz-Gauss beams. Results Phys. 2020, 19, 103643. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, F.; Feng, S. Airy transform of Laguerre-Gaussian beams. Opt. Express 2020, 28, 19683–19699. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhou, T.; Wang, F.; Li, X.; Chen, R.; Zhou, Y.; Zhou, G. Realization and measurement of Airy transform of Gaussian vortex beams. Opt. Laser Technol. 2021, 143, 107334. [Google Scholar] [CrossRef]
- Martinez-Herrero, R.; Mejias, P. Second-order spatial characterization of hard-edge diffracted beams. Opt. Lett. 1993, 18, 1669–1671. [Google Scholar] [CrossRef]
- Broky, J.; Siviloglou, G.A.; Dogariu, A.; Christodoulides, D.N. Self-healing properties of optical Airy beams. Opt. Express 2008, 16, 12880–12891. [Google Scholar] [CrossRef] [PubMed]
- Arrizón, V.; Ruiz, U.; Carrada, R.; González, L.A. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. JOSA A 2007, 24, 3500–3507. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sharma, P.; Jaiswal, V.K.; Mehrotra, R. Elliptically squeezed axicon phase for detecting topological charge of vortex beam. Opt. Commun. 2021, 485, 126710. [Google Scholar] [CrossRef]
- Wang, X.; Nie, Z.; Liang, Y.; Wang, J.; Li, T.; Jia, B. Recent advances on optical vortex generation. Nanophotonics 2018, 7, 1533–1556. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, S.; Liu, H.; Chen, X. Superhigh-Resolution Recognition of Optical Vortex Modes Assisted by a Deep-Learning Method. Phys. Rev. Lett. 2019, 123, 183902. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Zhang, H.; Hu, Z.; Lu, X.; Lu, X.; Cai, Y.; Zhao, C. Airy Transform of the New Power-Exponent-Phase Vortex Beam. Photonics 2023, 10, 974. https://doi.org/10.3390/photonics10090974
Lin Q, Zhang H, Hu Z, Lu X, Lu X, Cai Y, Zhao C. Airy Transform of the New Power-Exponent-Phase Vortex Beam. Photonics. 2023; 10(9):974. https://doi.org/10.3390/photonics10090974
Chicago/Turabian StyleLin, Qidong, Hao Zhang, Zhiquan Hu, Xiaotan Lu, Xingyuan Lu, Yangjian Cai, and Chengliang Zhao. 2023. "Airy Transform of the New Power-Exponent-Phase Vortex Beam" Photonics 10, no. 9: 974. https://doi.org/10.3390/photonics10090974
APA StyleLin, Q., Zhang, H., Hu, Z., Lu, X., Lu, X., Cai, Y., & Zhao, C. (2023). Airy Transform of the New Power-Exponent-Phase Vortex Beam. Photonics, 10(9), 974. https://doi.org/10.3390/photonics10090974