A Concise and Adaptive Sidelobe Suppression Algorithm Based on LMS Filter for Pulse-Compressed Signal of Φ-OTDR
Abstract
:1. Introduction
2. Principle and Method
2.1. Phase Coding and Matched Filtering Theory
2.2. LMS Adaptive Filter
- Initialize the weight vector w(0) and set a proper step factor μ;
- For each new input sample s(n), compute the output signal y(n) and the error signal e(n);
- Update the weight vector w(n) according to the LMS update formula;
- Repeat steps 1–2 until convergence or termination.
3. Simulations
3.1. The Step Factor μ in the LMS Algorithm
3.2. The Performance of LMS Method for Pulse Compression Signals
4. Experiments
4.1. Experimental Setup
4.2. Parameter Optimisation
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Li, Y.; Chen, X.; Dai, J.; Chen, L.; Hu, C.; Deng, C.; Zhang, Q.; Pang, F.; Zhang, X.; et al. Concise method for high-precision vibration recovery of Φ-OTDR based on the GF-FastICA algorithm. Opt. Lett. 2023, 48, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Catalano, E.; Coscetta, A.; Cerri, E.; Cennamo, N.; Zeni, L.; Minardo, A. Automatic traffic monitoring by Φ-OTDR data and Hough transform in a real-field environment. Appl. Opt. 2021, 60, 3579. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Zhang, X.; Zou, N.; Song, J.; Fang, X.; Zhang, Y. Φ-OTDR based on-line monitoring of overhead power transmission line. J. Light. Technol. 2021, 39, 5163–5169. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, Y.; Shi, Y.; Ansari, F.; Taylor, T. Research on the Φ-OTDR fiber sensor sensitive for all of the distance. Opt. Commun. 2018, 407, 148–152. [Google Scholar] [CrossRef]
- Loayssa, A.; Sagues, M.; Eyal, A. Phase noise effects on phase-sensitive OTDR sensors using optical pulse compression. J. Light. Technol. 2021, 40, 2561–2569. [Google Scholar] [CrossRef]
- Pastor-Graells, J.; Cortés, L.R.; Fernández-Ruiz, M.R.; Martins, H.F.; Azaña, J.; Martin-Lopez, S.; Gonzalez-Herraez, M. SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts. Opt. Lett. 2017, 42, 1728–1731. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, Y.; Wang, Z. Distributed fiber birefringence measurement using pulse-compression Φ-OTDR. Photonic Sens. 2021, 11, 402–410. [Google Scholar] [CrossRef]
- Xu, N.; Wang, P.; Wang, Y.; Liu, X.; Bai, Q.; Gao, Y. Crosstalk Noise Suppressed for Multi-frequency Φ-OTDR Using Compressed Sensing. J. Light. Technol. 2021, 39, 7343–7350. [Google Scholar] [CrossRef]
- Jones, M.D. Using simplex codes to improve OTDR sensitivity. IEEE Photonics Technol. Lett. 1993, 5, 822–824. [Google Scholar] [CrossRef]
- Lee, D.; Yoon, H.; Kim, P.; Park, J.; Kim, N.Y.; Park, N. SNR enhancement of OTDR using biorthogonal codes and generalized inverses. IEEE Photonics Technol. Lett. 2004, 17, 163–165. [Google Scholar]
- Sagues, M.; Piñeiro, E.; Cerri, E.; Minardo, A.; Eyal, A.; Loayssa, A. Two-wavelength phase-sensitive OTDR sensor using perfect periodic correlation codes for measurement range enhancement, noise reduction and fading compensation. Opt. Express 2021, 29, 6021–6035. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, Q.; Li, W.; Zheng, Q.; Wang, Y. Simultaneous OTDR dynamic range and spatial resolution enhancement by digital LFM pulse and short-time FrFT. Appl. Sci. 2019, 9, 668. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Fu, Y.; Lin, S.; Jiang, J.; Rao, Y. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR. IEEE Internet Things 2018, 6, 6117–6124. [Google Scholar] [CrossRef]
- Vazquez, G.D.B.; Martínez, O.E.; Kunik, D. Distributed temperature sensing using cyclic pseudorandom sequences. IEEE Sens. J. 2016, 17, 1686–1691. [Google Scholar] [CrossRef]
- Mao, Y.; Dai, Z.; Zhang, X. Pulse-coded optical time-domain reflectometer technology. Laser J. 2013, 34, 42–43. [Google Scholar]
- Cui, K.; Liu, F.; Wang, K.; Liu, X.; Yuan, J.; Yan, B.; Zhou, X. Interference-fading-suppressed pulse-coding Φ-OTDR using spectrum extraction and rotated-vector-sum method. IEEE Photonics J. 2021, 13, 6800206. [Google Scholar] [CrossRef]
- Martins, H.F.; Shi, K.; Thomsen, B.C.; Martin-Lopez, S.; Gonzalez-Herraez, M.; Savory, S.J. Real time dynamic strain monitoring of optical links using the backreflection of live PSK data. Opt. Express 2016, 24, 22303–22318. [Google Scholar] [CrossRef] [PubMed]
- Shiloh, L.; Levanon, N.; Eyal, A. Highly-sensitive distributed dynamic strain sensing via perfect periodic coherent codes. In Proceedings of the 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, Lausanne, Switzerland, 24–28 September 2018; Optica Publishing Group: Washington, DC, USA, 2018. paper TuE25. [Google Scholar]
- Wang, Y.; Jiang, Z. Application of Golay codes to distributed optical fiber sensor for long-distance oil pipeline leakage and external damage detection. Chin. Opt. Lett. 2006, 4, 141–144. [Google Scholar]
- Chen, Y.; Tian, J.; Liu, Y. Variable step size LMS algorithm based on modified Sigmoid function. In Proceedings of the 2014 International Conference on Audio, Language and Image Processing, Shanghai, China, 7–9 July 2014; pp. 627–630. [Google Scholar]
Parameter | Value |
---|---|
Number of LMS filter orders | 16 |
Number of the Golay code (bit) | 128 |
The μ of WGN | 0 |
The σ of WGN | 0.1 |
The SNR of WGN (dB) | 5 |
The length of fiber (km) | 9 |
Number of sampling points | 6.4 × 106 |
Method | PSLR (dB) | Spatial Resolution (m) | Time Cost (s) |
---|---|---|---|
Raw signals | −11.60 | 4.18 | 0.67 |
Hanning windows method | −15.32 | 7.76 | 1.78 |
The RLS method | −13.45 | 5.38 | 2.32 |
The proposed method | −15.86 | 3.81 | 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Chen, X.; Zhang, Y.; Hu, X.; Wu, J.; Liu, L.; Deng, C.; Hu, C.; Huang, Y. A Concise and Adaptive Sidelobe Suppression Algorithm Based on LMS Filter for Pulse-Compressed Signal of Φ-OTDR. Photonics 2024, 11, 70. https://doi.org/10.3390/photonics11010070
Shen W, Chen X, Zhang Y, Hu X, Wu J, Liu L, Deng C, Hu C, Huang Y. A Concise and Adaptive Sidelobe Suppression Algorithm Based on LMS Filter for Pulse-Compressed Signal of Φ-OTDR. Photonics. 2024; 11(1):70. https://doi.org/10.3390/photonics11010070
Chicago/Turabian StyleShen, Wei, Xiaofeng Chen, Yong Zhang, Xin Hu, Jian Wu, Lijun Liu, Chuanlu Deng, Chengyong Hu, and Yi Huang. 2024. "A Concise and Adaptive Sidelobe Suppression Algorithm Based on LMS Filter for Pulse-Compressed Signal of Φ-OTDR" Photonics 11, no. 1: 70. https://doi.org/10.3390/photonics11010070
APA StyleShen, W., Chen, X., Zhang, Y., Hu, X., Wu, J., Liu, L., Deng, C., Hu, C., & Huang, Y. (2024). A Concise and Adaptive Sidelobe Suppression Algorithm Based on LMS Filter for Pulse-Compressed Signal of Φ-OTDR. Photonics, 11(1), 70. https://doi.org/10.3390/photonics11010070