Modeling a Fully Polarized Optical Fiber Suitable for Photonic Integrated Circuits or Sensors
Abstract
:1. Introduction
2. Method
3. Numerical Results
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noda, J.; Okamoto, K.; Sasaki, Y. Polarization-maintaining fibers and their applications. J. Light. Technol. 1986, 4, 1071–1089. [Google Scholar] [CrossRef]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.-K.; Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Pan, J.W.; Chen, Z.B.; Lu, C.Y.; Weinfurter, H.; Zeilinger, A.; Żukowski, M. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012, 84, 777–838. [Google Scholar] [CrossRef]
- Walker, G.; Walker, N. Alignment of polarisationmaintaining fibres by temperature modulation. Electron. Lett. 1987, 23, 689–691. [Google Scholar] [CrossRef]
- Arora, P.; Agarwal, A.; Gupta, A.S. Simple alignment technique for polarisation maintaining fibres. Rev. Sci. Instrum. 2011, 82, 125103. [Google Scholar] [CrossRef] [PubMed]
- Nyman, R.A.; Varoquaux, G.; Villier, B.; Sacchet, D.; Moron, F.; Le Coq, Y.; Aspect, A.; Bouyer, P. Tapered-amplified antireflectioncoated laser diodes for potassium and rubidium atomic-physics experiments. Rev. Sci. Instrum. 2006, 77, 033105. [Google Scholar] [CrossRef]
- Bolpasi, V.; Von Klitzing, W. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 µW. Rev. Sci. Instrum. 2010, 81, 113108. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Sun, W.; Fu, Q.; Chen, Z. Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Appl. Opt. 1999, 38, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Loeb, N.G.; Fu, Q. Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium. Appl. Opt. 2002, 41, 5728–5743. [Google Scholar] [CrossRef] [PubMed]
- Sacks, Z.; Kingsland, D.; Lee, R.; Lee, J.-F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propag. 1995, 43, 1460–1463. [Google Scholar] [CrossRef]
- Sun, W.; Videen, G.; Lin, B.; Hu, Y. Modeling light scattered from and transmitted through dielectric periodic structures on a substrate. Appl. Opt. 2007, 46, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, J.-M.; Grüner-Nielsen, L.; Kristensen, P.; Balling, P. Measurement of effective refractive-index differences in a few-mode fiber by axial fiber stretching. Opt. Express 2012, 20, 18646–18651. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, J.M.; Gates, S.M. Silicon chemical vapor deposition one step at a time: Fundamental studies of silicon hydride chemistry. Acc. Chem. Res. 1991, 24, 9–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W. Modeling a Fully Polarized Optical Fiber Suitable for Photonic Integrated Circuits or Sensors. Photonics 2024, 11, 961. https://doi.org/10.3390/photonics11100961
Sun W. Modeling a Fully Polarized Optical Fiber Suitable for Photonic Integrated Circuits or Sensors. Photonics. 2024; 11(10):961. https://doi.org/10.3390/photonics11100961
Chicago/Turabian StyleSun, Wenbo. 2024. "Modeling a Fully Polarized Optical Fiber Suitable for Photonic Integrated Circuits or Sensors" Photonics 11, no. 10: 961. https://doi.org/10.3390/photonics11100961
APA StyleSun, W. (2024). Modeling a Fully Polarized Optical Fiber Suitable for Photonic Integrated Circuits or Sensors. Photonics, 11(10), 961. https://doi.org/10.3390/photonics11100961