Holographic Multi-Notch Filters Recorded with Simultaneous Double-Exposure Contact Mirror-Based Method
Abstract
:1. Introduction
2. Principles
2.1. Normally Incident Condition
2.2. Obliquely Incident Condition
2.3. Simultaneous Double-Exposure Contact Mirror-Based Method
3. Experimental Results and Discussion
3.1. Measurement of Transmittances and Diffraction Efficiencies
3.1.1. Analysis of Transmittances and Diffraction Efficiencies Under the Normally Incident Reconstruction Condition
3.1.2. Analysis of Transmittances and Diffraction Efficiencies Under the Obliquely Incident Reconstruction Conditions
3.2. Relationships Between Recording Incident Angle, Recording Wavelength, and Dual Operational Central Wavelengths
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulrich, R. Interference filters for the far infrared. Appl. Opt. 1968, 7, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-N.; Schulmerich, M.V.; Bhargava, R.; Cunningham, B.T. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy. Opt. Express 2011, 19, 24182–24197. [Google Scholar] [CrossRef] [PubMed]
- Essinger-Hileman, T.; Bennett, C.; Corbett, L.; Guo, H.; Helson, K.; Marriage, T.; Meador, M.A.B.; Rostem, K.; Wollack, E.J. Aerogel scattering filters for cosmic microwave background observations. Appl. Opt. 2020, 59, 5439–5446. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, K.; Zhu, X.; Wu, C. Wavelength-tunable deep-ultraviolet thin-film filter: Design and experimental demonstration. Appl. Opt. 2021, 60, 10199–10206. [Google Scholar] [CrossRef]
- Melloni, A.; Martinelli, M. Synthesis of direct-coupled-resonators bandpass filters for WDM systems. J. Light. Technol. 2002, 20, 296–303. [Google Scholar] [CrossRef]
- Darvish, G.; Moravvej-Farshi, M.K.; Zarifkar, A.; Saghafi, K. Narrowband optical filters suitable for various applications in optical communications. Appl. Opt. 2008, 47, 5140–5146. [Google Scholar] [CrossRef]
- Li, F.; Zou, D.; Ding, L.; Sun, Y.; Li, J.; Sui, Q.; Li, L.; Yi, X.; Li, Z. 100 Gbit/s PAM4 signal transmission and reception for 2-km interconnect with adaptive notch filter for narrowband interference. Opt. Express 2018, 26, 24066–24074. [Google Scholar] [CrossRef]
- Young, M. Linewidth measurement by high-pass filtering: A new look. Appl. Opt. 1983, 22, 2022–2025. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Chen, J.-J.; Feng, H.-H.; Chen, H.; Wang, Q.-M. Rugate filters used in slit-lamp delivery to improve color rendering of illumination for retinal photocoagulation. Appl. Opt. 2014, 53, 3361–3369. [Google Scholar] [CrossRef]
- Gao, S.; McLean, D.; Lai, J.; Micou, C.; Nathan, A. Reduction of noise spikes in touch screen systems by low pass spatial filtering. J. Disp. Technol. 2016, 12, 957–963. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, C.; Yang, Y.; Ma, H.; Sun, Y. Improving the color gamut of a liquid-crystal display by using a bandpass filter. Curr. Opt. Photonics 2019, 3, 590–596. [Google Scholar]
- Behrendt, A.; Reichardt, J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Appl. Opt. 2000, 39, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, B.; Zhi, D.-D.; Fang, X.; Li, T.; Du, W.-F.; Wang, X.-X.; Li, H.-S.; Sun, F.-K.; Gu, G.C. Stray light analysis and suppression of a UV multiple sub-pupil ultra-spectral imager. Appl. Opt. 2024, 63, 6112–6120. [Google Scholar] [CrossRef]
- Labuz, G.; Papadatou, E.; Vargas-Martín, F.; López-Gil, N.; Reus, N.J.; Berg, T.J.T.P.V. Validation of a spectral light scattering method to differentiate large from small particles in intraocular lenses. Biomed. Opt. Express 2017, 8, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Edmund Optics. Optical Filters. Available online: https://www.edmundoptics.com.tw/knowledge-center/application-notes/optics/optical-filters (accessed on 3 August 2024).
- Peng, W.; Zhang, G.; Lv, Y.; Qin, L.; Qi, K. Ultra-narrowband absorption filter based on a multilayer waveguide structure. Opt. Express 2021, 29, 14582–14600. [Google Scholar] [CrossRef]
- Barlis, A.; Guo, H.; Helson, K.; Bennett, C.; Chan, C.Y.Y.; Marriage, T.; Quijada, M.; Tokarz, A.; Vivod, S.; Wollack, E.; et al. Fabrication and characterization of optical filters from polymeric aerogels loaded with diamond scattering particles. Appl. Opt. 2024, 63, 6036–6051. [Google Scholar] [CrossRef]
- Hecht, E. Amplitude-Splitting Interferometers. In OPTICS, 5th ed.; Pearson: New York, NY, USA, 2017; pp. 416–431. [Google Scholar]
- Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Huang, Y.-T. Polarization-selective volume holograms: General design. Appl. Opt. 1994, 33, 2115–2120. [Google Scholar] [CrossRef]
- Chen, J.-H.; Tseng, H.-L.; Hsu, F.-H.; Han, C.-Y.; Chen, K.-H.; Yeh, C.-H.; Hsu, K.-Y. Design and Fabrication of a Holographic Radial Polarization Converter. Photonics 2020, 7, 85. [Google Scholar] [CrossRef]
- Righini, G.C.; Russo, V.; Sottini, S. Reflection Holographic Filters for Compacting Optical Processors. Appl. Opt. 1974, 13, 1019–1022. [Google Scholar] [CrossRef]
- Molesini, G. Reflection holographic gratings for optical filtering. Opt. Acta 1984, 31, 903–916. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Chou, J.; Huang, W. The study on the narrow band holographic reflection filters. In Proceedings of the International Conference on Holography Applications, Beijing, China, 2–4 July 1986; Volume 673, pp. 463–469. [Google Scholar]
- Zhang, G.; Montemezzani, G.; Günter, P. Narrow-bandwidth holographic reflection filters with photopolymer films. Appl. Opt. 2001, 40, 2423–2427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gordon, M.; Russo, J.M.; Vorndran, S.; Escarra, M.; Atwater, H.; Kostuk, R.K. Reflection hologram solar spectrum-splitting filters. In Proceedings of the High and Low Concentrator Systems for Solar Electric Applications VII, San Diego, CA, USA, 12–16 August 2012. [Google Scholar]
- Moein, T.; Ji, D.; Zeng, X.; Liu, K.; Gan, Q.; Cartwright, A.N. Holographic Photopolymer Linear Variable Filter with Enhanced Blue Reflection. ACS Appl. Mater. Interfaces 2014, 6, 3081–3087. [Google Scholar] [CrossRef] [PubMed]
- Sultanova, N.; Kasarova, S.; Nikolov, I. Refractive Index of Poly(methyl methacrylate) (PMMA)—Sultanova. Available online: https://refractiveindex.info/?shelf=organic&book=poly(methyl_methacrylate)&page=Sultanova (accessed on 3 August 2024).
Incident Angle (°) | Wavelength (nm) | Ts (%) | Tp (%) | ηs (%) | ηp (%) | FWHM(s/p) (nm) |
---|---|---|---|---|---|---|
0 | 531.13 | 33.36 | 33.28 | 52.35 | 52.45 | 10.3/10.3 |
633.01 | 22.89 | 22.82 | 67.30 | 67.40 | 13.2/13.2 | |
10 | 527.52 | 33.01 | 33.71 | 51.52 | 51.71 | 11.6/11.9 |
630.21 | 26.12 | 26.54 | 61.65 | 61.98 | 14.8/14.8 | |
20 | 517.01 | 30.87 | 35.06 | 54.13 | 50.62 | 10.6/11.1 |
617.26 | 22.18 | 26.90 | 67.05 | 62.11 | 13.2/13.2 | |
30 | 501.28 | 29.07 | 39.67 | 57.38 | 48.42 | 10.3/10.6 |
598.16 | 19.39 | 30.66 | 71.57 | 60.13 | 13.5/12.5 | |
40 | 480.35 | 27.56 | 46.35 | 60.12 | 42.05 | 9.67/14.8 |
572.60 | 18.64 | 42.12 | 73.02 | 47.47 | 14.4/13.6 | |
50 | 457.73 | 25.93 | 55.37 | 60.94 | 30.57 | 12.0/17.7 |
545.11 | 13.35 | 48.20 | 80.21 | 39.51 | 14.9/12.6 |
λ1 (μm) | nf1 | λ2,n (μm) | nf2,n |
---|---|---|---|
0.450 | 1.5006 | 0.449 | 1.4982 |
0.532 | 1.4937 | 0.531 | 1.4913 |
0.633 | 1.4887 | 0.632 | 1.4863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, B.-H.; Hung, S.-C.; Chen, K.-H.; Yeh, C.-H.; Chen, J.-H. Holographic Multi-Notch Filters Recorded with Simultaneous Double-Exposure Contact Mirror-Based Method. Photonics 2024, 11, 977. https://doi.org/10.3390/photonics11100977
Zhuang B-H, Hung S-C, Chen K-H, Yeh C-H, Chen J-H. Holographic Multi-Notch Filters Recorded with Simultaneous Double-Exposure Contact Mirror-Based Method. Photonics. 2024; 11(10):977. https://doi.org/10.3390/photonics11100977
Chicago/Turabian StyleZhuang, Bing-Han, Sheng-Chun Hung, Kun-Huang Chen, Chien-Hung Yeh, and Jing-Heng Chen. 2024. "Holographic Multi-Notch Filters Recorded with Simultaneous Double-Exposure Contact Mirror-Based Method" Photonics 11, no. 10: 977. https://doi.org/10.3390/photonics11100977
APA StyleZhuang, B.-H., Hung, S.-C., Chen, K.-H., Yeh, C.-H., & Chen, J.-H. (2024). Holographic Multi-Notch Filters Recorded with Simultaneous Double-Exposure Contact Mirror-Based Method. Photonics, 11(10), 977. https://doi.org/10.3390/photonics11100977