Measurement of Atmospheric Coherence Length from a Shack–Hartmann Wavefront Sensor with Extended Sources
Abstract
:1. Introduction
2. Principles and Common Methods
2.1. DIMM
2.2. Wavefront Phase Variance Method
2.3. Extended Source Offset Algorithm
3. Simulation
3.1. Turbulence Simulation
3.2. Shack–Hartmann Sensor Simulation
4. Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A Contemporary Survey on Free Space Optical Communication: Potential, Technical Challenges, Recent Advances and Research Direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Bendersky, S.; Kopeika, N.S.; Blaunstein, N. Atmospheric Optical Turbulence over Land in Middle East Coastal Environments: Prediction Modeling and Measurements. Appl. Opt. 2004, 43, 4070–4079. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Janasik, M.; Fyffe, A.; Hay, D.; Zhou, Y.; Kantor, B.; Winder, T.; Boyd, R.W.; Leuchs, G.; Shi, Z. Compensation-Free High-Dimensional Free-Space Optical Communication Using Turbulence-Resilient Vector Beams. Nat. Commun. 2021, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Jamali, V.; Ajam, H.; Najafi, M.; Schmauss, B.; Schober, R.; Poor, H.V. Intelligent Reflecting Surface-Assisted Free-Space Optical Communications. IEEE Commun. Mag. 2021, 59, 57–63. [Google Scholar] [CrossRef]
- Najafi, M.; Schmauss, B.; Schober, R. Intelligent Reflecting Surfaces for Free Space Optical Communication Systems. IEEE Trans. Commun. 2021, 69, 6134–6151. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Lorences-Riesgo, A.; Ranzal, D.; Rocco, F.; Sousa, A.N.; Fernandes, M.A.; Brandao, B.T.; Carena, A.; Teixeira, A.L.; Medeiros, M.C.R.; et al. Adaptive Probabilistic Shaped Modulation for High-Capacity Free-Space Optical Links. J. Light. Technol. 2020, 38, 6529–6541. [Google Scholar] [CrossRef]
- Liu, C.; Chen, S.; Li, X.; Xian, H. Performance Evaluation of Adaptive Optics for Atmospheric Coherent Laser Communications. Opt. Express 2014, 22, 15554–15563. [Google Scholar] [CrossRef]
- Davies, R.; Kasper, M. Adaptive Optics for Astronomy. Annu. Rev. Astron. Astrophys. 2012, 50, 305–351. [Google Scholar] [CrossRef]
- Fried, D.L. Statistics of a Geometric Representation of Wavefront Distortion. J. Opt. Soc. Am. 1965, 55, 1427–1431. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Han, J. Methods of Atmospheric Coherence Length Measurement. Appl. Sci. 2022, 12, 2980. [Google Scholar] [CrossRef]
- Griffiths, R.; Osborn, J.; Farley, O.; Butterley, T.; Townson, M.J.; Wilson, R. Demonstrating 24-Hour Continuous Vertical Monitoring of Atmospheric Optical Turbulence. Opt. Express 2023, 31, 6730–6740. [Google Scholar] [CrossRef] [PubMed]
- Sabil, M.; Habib, A.; Benkhaldoun, Z. Interferential Seeing Monitor, a Seeing Monitor for Atmospheric Turbulence Studies: Calibration with the Differential Image Motion Monitor. Mon. Not. R. Astron. Soc. 2020, 500, 1884–1888. [Google Scholar] [CrossRef]
- Perera, S.; Wilson, R.W.; Osborn, J.; Butterley, T. SHIMM: A Seeing and Turbulence Monitor for Astronomy; Marchetti, E., Close, L.M., Véran, J.-P., Eds.; SPIE Publications: Edinburgh, UK, 2016; p. 99093J. [Google Scholar]
- Perera, S.; Wilson, R.W.; Butterley, T.; Osborn, J.; Farley, O.J.D.; Laidlaw, D.J. SHIMM: A Versatile Seeing Monitor for Astronomy. Mon. Not. R. Astron. Soc. 2023, 520, 5475–5486. [Google Scholar] [CrossRef]
- Bally, J.; Theil, D.; Billawala, Y.; Potter, D.; Loewenstein, R.F.; Mrozek, F.; Lloyd, J.P. A Hartmann Differential Image Motion Monitor (H-DIMM) for Atmospheric Turbulence Characterisation. Publ. Astron. Soc. Aust. 1996, 13, 22–27. [Google Scholar] [CrossRef]
- Andrade, P.P.; Garcia, P.J.V.; Correia, C.M.; Kolb, J.; Carvalho, M.I. Estimation of Atmospheric Turbulence Parameters from Shack–Hartmann Wavefront Sensor Measurements. Mon. Not. R. Astron. Soc. 2019, 483, 1192–1201. [Google Scholar] [CrossRef]
- Sauvage, C.; Robert, C.; Mugnier, L.M.; Conan, J.-M.; Cohard, J.-M.; Nguyen, K.L.; Irvine, M.; Lagouarde, J.-P. Near Ground Horizontal High Resolution Cn2 Profiling from Shack-Hartmann Slope and Scintillation Data. Appl. Opt. 2021, 60, 10499–10519. [Google Scholar] [CrossRef]
- Dayton, D.; Gonglewski, J.; Pierson, B.; Spielbusch, B. Atmospheric Structure Function Measurements with a Shack–Hartmann Wave-Front Sensor. Opt. Lett. 1992, 17, 1737–1739. [Google Scholar] [CrossRef]
- Rao, C. Atmospheric Characterization with Shack-Hartmann Wavefront Sensors for Non-Kolmogorov Turbulence. Opt. Eng. 2002, 41, 534. [Google Scholar] [CrossRef]
- Griffiths, R.; Bardou, L.; Butterley, T.; Osborn, J.; Wilson, R.; Bustos, E.; Tokovinin, A.; Le Louarn, M.; Otarola, A. A Comparison of Next-Generation Turbulence Profiling Instruments at Paranal. Mon. Not. R. Astron. Soc. 2024, 529, 320–330. [Google Scholar] [CrossRef]
- He, Y.; Bao, M.; Chen, Y.; Ye, H.; Fan, J.; Shi, G. Accuracy Characterization of Shack–Hartmann Sensor with Residual Error Removal in Spherical Wavefront Calibration. Light: Adv. Manuf. 2023, 4, 393–403. [Google Scholar] [CrossRef]
- Aristidi, E.; Ziad, A.; Chabé, J.; Fantéi-Caujolle, Y.; Renaud, C.; Giordano, C. A Generalized Differential Image Motion Monitor. Mon. Not. R. Astron. Soc. 2019, 486, 915–925. [Google Scholar] [CrossRef]
- Shomali, R.; Nasiri, S.; Darudi, A. Measurement of the Atmospheric Primary Aberrations by a 4-Aperture Differential Image Motion Monitor. J. Opt. 2011, 13, 055708. [Google Scholar] [CrossRef]
- Dibaee, B.; Shomali, R.; Khalilzadeh, J.; Jafari, A.; Amniat-Talab, M. 4-Aperture Differential Image Motion Monitor as a New Approach for Estimating Atmospheric Turbulence Parameters. J. Mod. Opt. 2019, 66, 753–763. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, G.; Zhang, X.; Dou, J.; Chen, R.; Zhu, Y.; Yang, F. Multiple-Aperture-Based Solar Seeing Profiler. Publ. Astron. Soc. Pac. 2015, 127, 870–879. [Google Scholar] [CrossRef]
- Kornilov, V.; Safonov, B. Wave Propagation Effect on Differential Image Motion Monitor Measurements. Mon. Not. R. Astron. Soc. 2019, 488, 1273–1281. [Google Scholar] [CrossRef]
- Butterley, T.; Wilson, R.W.; Sarazin, M. Determination of the Profile of Atmospheric Optical Turbulence Strength from SLODAR Data: SLODAR Turbulence Profiling. Mon. Not. R. Astron. Soc. 2006, 369, 835–845. [Google Scholar] [CrossRef]
- Kornilov, V.; Safonov, B. Differential Image Motion in the Short-Exposure Regime: Short-Exposure Differential Image Motion. Mon. Not. R. Astron. Soc. 2011, 418, 1878–1888. [Google Scholar] [CrossRef]
- Angel, J.R.P.; Lloyd-Hart, M. Atmospheric Tomography with Rayleigh Laser Beacons for Correction of Wide Fields and 30-m-Class Telescopes; Wizinowich, P.L., Ed.; SPIE Publications: Munich, Germany, 2000; pp. 270–276. [Google Scholar]
- Zuraski, S.M.; Beecher, E.; McCrae, J.E.; Fiorino, S.T. Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values for a Dynamically Ranged Rayleigh Beacon. Opt. Eng. 2020, 59, 081807. [Google Scholar] [CrossRef]
- Roddier, F. The Effects of Atmospheric Turbulence in Optical Astronomy. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 1981; Volume 19, pp. 281–376. ISBN 978-0-444-85444-5. [Google Scholar]
- Noll, R.J. Zernike Polynomials and Atmospheric Turbulence. J. Opt. Soc. Am. 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Rao, Y.R. Application of Normalized Cross Correlation to Image Registration. Int. J. Res. Eng. Technol. 2014, 3, 12–16. [Google Scholar] [CrossRef]
- Pallotta, L.; Giunta, G.; Clemente, C. Subpixel SAR Image Registration Through Parabolic Interpolation of the 2-D Cross Correlation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4132–4144. [Google Scholar] [CrossRef]
- Paulson, D.A.; Wu, C.; Davis, C.C. Randomized Spectral Sampling for Efficient Simulation of Laser Propagation through Optical Turbulence. J. Opt. Soc. Am. B 2019, 36, 3249–3262. [Google Scholar] [CrossRef]
Zernike Order | Variance (rad2) | Zernike Order | Variance (rad2) | Zernike Order | Variance (rad2) |
---|---|---|---|---|---|
1 | 0.4479 (D/r0)5/3 | 8 | 0.0062 (D/r0)5/3 | 15 | 0.0012 (D/r0)5/3 |
2 | 0.4480 (D/r0)5/3 | 9 | 0.0062 (D/r0)5/3 | 16 | 0.0012 (D/r0)5/3 |
3 | 0.0230 (D/r0)5/3 | 10 | 0.0024 (D/r0)5/3 | 17 | 0.0012 (D/r0)5/3 |
4 | 0.0230 (D/r0)5/3 | 11 | 0.0024 (D/r0)5/3 | 18 | 0.0011 (D/r0)5/3 |
5 | 0.0232 (D/r0)5/3 | 12 | 0.0024 (D/r0)5/3 | 19 | 0.0012 (D/r0)5/3 |
6 | 0.0061 (D/r0)5/3 | 13 | 0.0024 (D/r0)5/3 | 20 | 0.0012 (D/r0)5/3 |
7 | 0.0062 (D/r0)5/3 | 14 | 0.0024 (D/r0)5/3 |
SHWFS Parameters | Value |
---|---|
Incident Wavefront Diameter | 6.6 mm |
Microlens Number | 11 × 11 (97 effective) |
Microlens Focal Length | 30 mm |
Microlens Pitch | 600 μm |
Sub-aperture Pixels Number | 60 × 60 |
Photodetector | Microlens Array | ||
---|---|---|---|
Model | EoSens1.1CXP2 | Sub-aperture shape | Square |
Sub-aperture pixels | 28 × 28 | Effective sub-apertures | 89 |
Number of pixels | 308 × 308 | Microlens pitch | 383.6 μm |
Effective aperture diameter | 4 mm | Focal Length | 16.255 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, Y.; Yang, L.; Liu, J.; Wang, W.; Li, Z.; Wang, J.; Chen, T. Measurement of Atmospheric Coherence Length from a Shack–Hartmann Wavefront Sensor with Extended Sources. Photonics 2024, 11, 1184. https://doi.org/10.3390/photonics11121184
Zhang J, Zhao Y, Yang L, Liu J, Wang W, Li Z, Wang J, Chen T. Measurement of Atmospheric Coherence Length from a Shack–Hartmann Wavefront Sensor with Extended Sources. Photonics. 2024; 11(12):1184. https://doi.org/10.3390/photonics11121184
Chicago/Turabian StyleZhang, Junrui, Yuling Zhao, Leqiang Yang, Jie Liu, Wenyu Wang, Zhengwei Li, Jianli Wang, and Tao Chen. 2024. "Measurement of Atmospheric Coherence Length from a Shack–Hartmann Wavefront Sensor with Extended Sources" Photonics 11, no. 12: 1184. https://doi.org/10.3390/photonics11121184
APA StyleZhang, J., Zhao, Y., Yang, L., Liu, J., Wang, W., Li, Z., Wang, J., & Chen, T. (2024). Measurement of Atmospheric Coherence Length from a Shack–Hartmann Wavefront Sensor with Extended Sources. Photonics, 11(12), 1184. https://doi.org/10.3390/photonics11121184