Curved Holographic Augmented Reality Near-Eye Display System Based on Freeform Holographic Optical Element with Extended Field of View
Abstract
:1. Introduction
2. Principles and Methods
2.1. System Design
2.2. Field of View
2.3. Calculation Principle
2.4. Optimization Principle
3. Numerical Simulation and Experimental Results
3.1. Numerical Simulation Method
3.2. Numerical Simulation Results
3.3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, C.; Mercier, O.; Bang, K.; Li, G.; Zhao, Y.; Lanman, D. Design and fabrication of freeform holographic optical elements. ACM Trans. Graph. 2020, 39, 184. [Google Scholar] [CrossRef]
- Shu, T.; Hu, G.Y.; Wu, R.M.; Li, H.F.; Zhang, Z.P.; Liu, X. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner. Opt. Express 2022, 30, 31714–31727. [Google Scholar] [CrossRef] [PubMed]
- Mukawa, H.; Akutsu, K.; Matsumura, I.; Nakano, S.; Yoshida, T.; Kuwahara, M.; Aiki, K. A full-color eyewear display using planar waveguides with reflection volume holograms. J. Soc. Inf. Disp. 2009, 17, 185–193. [Google Scholar] [CrossRef]
- Guo, J.; Tu, Y.; Yang, L.; Wang, L.; Wang, B. Holographic waveguide display with a combined-grating in-coupler. Appl. Opt. 2016, 55, 9293–9298. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tu, Y.; Shi, Z.; Guo, J.; Wang, L.; Zhang, Y.; Li, X.; Wang, B. Efficient coupling to a waveguide by combined gratings in a holographic waveguide display system. Appl. Opt. 2018, 57, 10135–10145. [Google Scholar] [CrossRef]
- Piao, J.A.; Li, G.; Piao, M.L.; Kim, N. Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer. J. Opt. Soc. Korea 2013, 17, 242–248. [Google Scholar] [CrossRef]
- Kim, S.; Park, J. Optical see-through Maxwellian near-to-eye display with an enlarged eye-box. Opt. Lett. 2018, 43, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Bang, K.; Li, G.; Lee, B. Holographic near-eye display with expanded eye-box. ACM Trans. Graph. 2018, 37, 195. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, Y.K.; Won, Y.H. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens. Opt. Express 2018, 26, 19341–19355. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Yoo, C.; Bang, K.; Lee, B. Eye-box extended retinal projection type near-eye display with multiple independent viewpoints. Appl. Opt. 2021, 60, 268–276. [Google Scholar] [CrossRef]
- Song, W.; Li, X.; Zheng, Y.; Liu, Y.; Wang, Y. Full-color retinal-projection near-eye display using a multiplexing-encoding holographic method. Opt. Express 2021, 29, 8098–8107. [Google Scholar] [CrossRef]
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 2017, 36, 85. [Google Scholar] [CrossRef]
- Qin, X.; Sang, X.; Li, H.; Yu, C.; Xiao, R.; Zhong, C.; Sun, Z.; Dong, Y.; Yan, B. Binocular holographic display based on the holographic optical element. J. Opt. Soc. Am. A 2022, 39, 2316–2324. [Google Scholar] [CrossRef]
- Fan, M.; Wu, B.; Yu, Y.; Zhao, S.; Zhang, H.; Liu, H. Concave Pin-mirror for Near-eye Display. Optik 2021, 245, 166976. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Tan, C.; Wu, Y.; Zhang, Y.Q.; Chen, N. Large field-of-view holographic Maxwellian display based on spherical crown diffraction. Opt. Express 2023, 31, 22660–22670. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tu, K.; Pang, Y.; Lv, G.Q.; Feng, Q.B.; Wang, A.T.; Ming, H. Enlarging the FOV of lensless holographic retinal projection display with two-step Fresnel diffraction. Appl. Phys. Lett. 2022, 121, 081103. [Google Scholar] [CrossRef]
- Travis, A.R.L.; Chen, L.; Georgiou, A.; Chu, J.; Kollin, J. Wedge guides and pupil steering for mixed reality. J. Soc. Inf. Disp. 2018, 26, 526–533. [Google Scholar] [CrossRef]
- Travis, A.R.L.; Chu, J.Q.; Georgiou, A. Curved wedges and shearing gratings for augmented reality. In Proceedings of the SPIE 10676, Digital Optics for Immersive Displays, Strasbourg, France, 24–25 April 2018. [Google Scholar]
- Guillaumée, M.; Vahdati, S.P.; Tremblay, E.; Mader, A.; Cadarso, V.J.; Grossenbacher, J.; Brugger, J.; Sprague, R.; Moser, C. Curved transflective holographic screens for head-mounted display. In Proceedings of the SPIE 8643, Advances in Display Technologies III, San Francisco, CA, USA, 6–7 February 2013. [Google Scholar]
- Choi, B.; Lee, S.; Lee, J.E.; Hong, S.S.; Lee, J.D.; Kim, S.C. A Study on the Optimum Curvature for the Curved Monitor. J. Inf. Disp. 2015, 16, 217–223. [Google Scholar] [CrossRef]
- Park, Y.; Yoo, J.J.; Kang, D.; Kim, S. Quantification model of proper curvature for large-sized curved TVs. J. Soc. Inf. Disp. 2015, 23, 391–396. [Google Scholar] [CrossRef]
- Close, D.H. Holographic Optical Elements. Opt. Eng. 1975, 14, 145408. [Google Scholar] [CrossRef]
- Fairchild, R.C.; Fienup, J.R. Computer-Originated Aspheric Holographic Optical Elements. Opt. Eng. 1982, 21, 211133. [Google Scholar] [CrossRef]
- Peng, K.O.; Frankena, H.J. Nonparaxial theory of curved holograms. Appl. Opt. 1986, 25, 1319. [Google Scholar] [CrossRef] [PubMed]
- Bang, K.; Jang, C.; Lee, B. Curved holographic optical elements and applications for curved see-through displays. J. Inf. Disp. 2019, 20, 9–23. [Google Scholar] [CrossRef]
- Shu, T.; Pei, C.Y.; Wu, R.M.; Li, H.F.; Liu, X. Design and fabricate freeform holographic optical elements on curved optical surfaces using holographic printing. Opt. Lett. 2023, 48, 6537–6540. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.D.; Liu, J.; Pi, D.P.; Duan, X.H. Fast method for calculating a curved hologram in a holographic display. Opt. Express 2020, 28, 11290–11300. [Google Scholar] [CrossRef]
- Friesem, A.A.; Amitai, Y. Method of Producing Holograms Particularly for Holographic Helmet Displays. U.S. Patent No. 4,998,786, 12 March 1991. [Google Scholar]
Shape of Substrate | FOV/° |
---|---|
Planar surface | 11.15 |
Curved surface | 11.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Xu, Y.; Wang, C.; Liu, J. Curved Holographic Augmented Reality Near-Eye Display System Based on Freeform Holographic Optical Element with Extended Field of View. Photonics 2024, 11, 1194. https://doi.org/10.3390/photonics11121194
Xu H, Xu Y, Wang C, Liu J. Curved Holographic Augmented Reality Near-Eye Display System Based on Freeform Holographic Optical Element with Extended Field of View. Photonics. 2024; 11(12):1194. https://doi.org/10.3390/photonics11121194
Chicago/Turabian StyleXu, Hong, Yuan Xu, Changyu Wang, and Juan Liu. 2024. "Curved Holographic Augmented Reality Near-Eye Display System Based on Freeform Holographic Optical Element with Extended Field of View" Photonics 11, no. 12: 1194. https://doi.org/10.3390/photonics11121194
APA StyleXu, H., Xu, Y., Wang, C., & Liu, J. (2024). Curved Holographic Augmented Reality Near-Eye Display System Based on Freeform Holographic Optical Element with Extended Field of View. Photonics, 11(12), 1194. https://doi.org/10.3390/photonics11121194