Easy-to-Fabricate UV-Glue-Based Cascaded Fabry–Perot Fiber Sensor Probe for Temperature Measurement
Abstract
:1. Introduction
2. The Principle of a Cascaded Fabry–Perot Sensor
3. Manufacturing of the Sensor
4. Temperature Measurements
4.1. Experimental Setup
4.2. The Measurement Results for Sample 1
4.3. The Measurement Results for Sample 2
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, M.S.; Coelho, L.; Schuster, K.; Kobelke, J.; Santos, J.L.; Frazão, O. Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube. Opt. Lett. 2011, 36, 4029. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wang, Y.; Qu, J.; Liao, C.; Yin, G.; He, J.; Zhou, J.; Tang, J.; Liu, S.; Li, Z. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet. Opt. Express 2015, 23, 1906. [Google Scholar] [CrossRef] [PubMed]
- Shivananju, B.N.; Yamdagni, S.; Fazuldeen, R.; Kumar, A.K.S.; Nithin, S.P.; Varma, M.M.; Asokan, S. Highly Sensitive Carbon Nanotubes Coated Etched Fiber Bragg Grating Sensor for Humidity Sensing. IEEE Sens. J. 2014, 14, 2615. [Google Scholar] [CrossRef]
- Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review. Sensors 2014, 14, 7451. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Zhang, S.; Chen, W.; Liu, Y.; Li, X.; Yan, Y.; Wang, S.; Geng, T.; Sun, W.; Yuan, L. Optical fiber sensors based on core-offset structure: A review. IEEE Sens. J. 2021, 21, 22388. [Google Scholar] [CrossRef]
- Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuator A Phys. 2000, 82, 40. [Google Scholar] [CrossRef]
- Lyu, D.; Peng, J.; Huang, Q.; Zheng, W.; Xiong, L.; Yang, M. Radiation-Resistant Optical Fiber Fabry-Perot Interferometer Used for High-Temperature Sensing. IEEE Sens. J. 2021, 21, 57. [Google Scholar] [CrossRef]
- Domínguez-Flores, C.E.; Monzón-Hernández, D.; Moreno-Basulto, J.I.; Rodríguez-Quiroz, O.; Minkovich, V.P.; López-Cortés, D.; Hernández-Romano, I. Real-Time Temperature Sensor Based on In-Fiber Fabry–Perot Interferometer Embedded in a Resin. J. Light. Technol. 2019, 37, 1084. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Yang, J.; Zhang, Y.; Ren, C. Microfiber Fabry-Perot interferometer used as a temperature sensor and an optical modulator. Opt. Laser Technol. 2020, 129, 106296. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, G.; Miao, C.; Zhang, S.; Li, H.; Zhao, J.; Wu, J. A Fabry-Perot temperature sensor sealed with thermo-sensitive polymer. Results Opt. 2021, 5, 100163. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, M.; Gao, F.; Zhu, B.; Zhao, Z.; Duan, L.; Fu, S.; Ouyang, J.; Wei, H.; Shum, P.P.; et al. Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement. IEEE Photonics J. 2015, 7, 7100210. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L.; Hao, S.; Tang, J. Advanced fiber sensors based on the vernier effect. Sensors 2022, 22, 2694. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.D.; Bartelt, H.; Frazão, O. Optical Vernier effect: Recent advances and developments. Laser Photonics Rev. 2021, 15, 2000588. [Google Scholar] [CrossRef]
- Dai, M.; Chen, Z.; Zhao, Y.; Mu, X.; Liu, X.; Gandhi, M.S.A.; Li, Q.; Lu, S.; Liu, S.; Fu, H.Y. Fiber optic temperature sensor with online controllable sensitivity based on Vernier effect. IEEE Sens. J. 2021, 21, 21555. [Google Scholar] [CrossRef]
- Gomes, A.D.; Becker, M.; Dellith, J.; Zibaii, M.I.; Latifi, H.; Rothhardt, M.; Bartelt, H.; Frazão, O. Multimode Fabry-Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing. Sensors 2019, 19, 453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liao, H.; Lu, P.; Jiang, X.; Fu, X.; Ni, W.; Liu, D.; Zhang, J. Ultrasensitive Temperature Sensor With Cascaded Fiber Optic Fabry–Perot Interferometers Based on Vernier Effect. IEEE Photonics J. 2018, 10, 6803411. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, X.; Jiang, C.; Chen, H.; Song, J.; Wang, Y.; Sun, S. High sensitivity temperature sensor based on enhanced Vernier effect through two parallel Fabry-Perot cavities. Appl. Opt. 2023, 62, 275. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.D.; Ferreira, M.S.; Bierlich, J.; Kobelke, J.; Rothhardt, M.; Bartelt, H.; Frazão, O. Optical Harmonic Vernier Effect: A New Tool for High Performance Interferometric Fibre Sensors. Sensors 2019, 19, 5431. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Xu, B.; Wang, D.; Yang, M. Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect. Opt. Commun. 2018, 414, 166. [Google Scholar] [CrossRef]
- Salceda-Delgado, G.; Van Newkirk, A.; Antonio-Lopez, J.E.; Martinez-Rios, A.; Schülzgen, A.; Amezcua-Correa, R. Optical Capillary Fiber Mode Interferometer for Pressure Sensing. IEEE Sens. J. 2020, 20, 2253. [Google Scholar] [CrossRef]
- Qiu, H.; Jiang, J.; Yao, L.; Dai, Z.; Liu, Z.; Qu, H.; Hu, X. Ultrasensitive cascaded in-line Fabry-Perot refractometers based on a C-shaped fiber and the Vernier effect. Opt. Express 2022, 30, 27704. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Engles, D.; Sharma, A.; Singh, M. Temperature sensitivity of long period fiber grating in SMF-28 fiber. Optik 2014, 125, 457. [Google Scholar] [CrossRef]
- Kelly, A.; Stearn, R.; McCartney, L. Composite materials of controlled thermal expansion. Compos. Sci. Technol. 2006, 66, 154. [Google Scholar] [CrossRef]
- Antunes, P.; Domingues, F.; Granada, M.; André, P. Mechanical Properties of Optical Fibers; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Norland Optical Adhesive 73. Available online: https://www.norlandprod.com/adhesives/noa%2073.html (accessed on 7 December 2023).
- Song, J.; Sun, S.; Jiang, C.; Chen, N.; Jiang, W.; Liu, C.; Ren, J.; Wang, S. Ultra-sensitive temperature and pressure sensor based on PDMS-based FPI and Vernier effect. Opt. Lett. 2023, 48, 1674. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Sheng, X.; Tang, Z.; Wang, X.; Lou, S. High and online tunable sensitivity fiber temperature sensor based on Vernier-effect. Opt. Fiber Technol. 2022, 72, 103003. [Google Scholar] [CrossRef]
- Xu, D.; Gao, H.; Hou, Z.; Zhang, Y.; Tong, X.; Zhang, Y.; Zhang, P.; Shen, J.; Li, C. A High-Sensitivity Fiber-Optic Fabry-Perot Gas Pressure Sensor With Epoxy Resin Adhesive. IEEE Sens. J. 2022, 22, 10551. [Google Scholar] [CrossRef]
- Mu, X.; Gao, J.; Yang, Y.; Wang, J.; Bi, L. Parallel Polydimethylsiloxane-Cavity Fabry-Perot Interferometric Temperature Sensor Based on Enhanced Vernier Effect. IEEE Sens. J. 2022, 22, 1333. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zhao, Y.; Jiang, J. Ultrasensitive Temperature Sensor Based on Fiber-Optic Fabry–Pérot Interferometer with Vernier Effect. J. Russ. Laser Res. 2019, 40, 243. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Lu, Y.; Zhang, L.; Ma, J.; Wang, L.; Sun, W. High-sensitivity Fabry-Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect. Opt. Lett. 2018, 43, 5355. [Google Scholar] [CrossRef]
- Hou, L.; Xu, B.; Kang, J.; Zhao, C.; Jin, S. Sensitivity-enhanced Fabry-Perot filled with PDMS temperature sensor based on Vernier effect. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018. [Google Scholar]
- Hou, L.; Zhao, C.; Xu, B.; Mao, B.; Shen, C.; Wang, D.N. Highly sensitive PDMS-filled Fabry-Perot interferometer temperature sensor based on the Vernier effect. Appl. Opt. 2019, 58, 4858. [Google Scholar] [CrossRef]
- Liang, J.; Qu, J.; Ye, J.; Liu, Y.; Qu, S. Ultra-Sensitive Temperature Sensor of Cascaded Dual PDMS-Cavity Based on Enhanced Vernier Effect. IEEE Sens. J. 2023, 23, 2264. [Google Scholar] [CrossRef]
- Pan, R.; Liu, M.; Bian, Y.; Xu, T.; Yang, W.; Yang, Y.; Wang, J.; Mu, X.; Bi, L. High-sensitive temperature sensor with parallel PDMS-filled FPIs based on dual Vernier effect. Opt. Commun. 2022, 518, 128284. [Google Scholar] [CrossRef]
Temperature (°C) | 20 | 22 | 24 | 26 | 28 | 30 |
OL change of Cavity1 (nm) | 0 | −85.0 | −170.2 | −255.4 | −340.8 | −426.3 |
OL change of Cavity2 (nm) | 0 | 2.2 | 4.4 | 6.6 | 8.8 | 11 |
Sensitivity (nm/°C) | Temperature Range (°C) | Cavity Structure | Fabrication Difficulty | Reference |
---|---|---|---|---|
6.386 | 42–54 | PDMS-MF | medium | [9] |
−13.09 | 40–58 | Glue-capillary | high | [17] |
16.51 | 27–41 | PDMS-SMF | Medium | [26] |
−9.9 | 50–52 | HB fiber-SMF | medium | [27] |
54.4 × 10−3 | 40–80 | Adhesive-HCF | medium | [28] |
−14.6 | 50–60 | PDMS-SMF | medium | [29] |
−183.99 × 10−3 | 38–100 | Tube-SMF | low | [30] |
19.55 | 23–31 | LC-SMF | high | [31] |
1.808 | 30–45 | PDMS-HCF | medium | [32] |
17.758 | 40–70 | PDMS-HCF | medium | [33] |
11.93 | 40–46 | SMF-double-groove cavity with PDMS | Middle | [34] |
7.61 | 34–39 | SMF-tube with PDMS | Middle | [35] |
4.54 | 20–40 | Glue-SMF | low | This work |
12.57 | 20–30 | Glue-SMF | low | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Fu, H.; Li, P.; Marques, C.; Teng, C.; Qu, H.; Caucheteur, C. Easy-to-Fabricate UV-Glue-Based Cascaded Fabry–Perot Fiber Sensor Probe for Temperature Measurement. Photonics 2024, 11, 111. https://doi.org/10.3390/photonics11020111
Hu X, Fu H, Li P, Marques C, Teng C, Qu H, Caucheteur C. Easy-to-Fabricate UV-Glue-Based Cascaded Fabry–Perot Fiber Sensor Probe for Temperature Measurement. Photonics. 2024; 11(2):111. https://doi.org/10.3390/photonics11020111
Chicago/Turabian StyleHu, Xuehao, Hongyu Fu, Pengcheng Li, Carlos Marques, Chuanxin Teng, Hang Qu, and Christophe Caucheteur. 2024. "Easy-to-Fabricate UV-Glue-Based Cascaded Fabry–Perot Fiber Sensor Probe for Temperature Measurement" Photonics 11, no. 2: 111. https://doi.org/10.3390/photonics11020111
APA StyleHu, X., Fu, H., Li, P., Marques, C., Teng, C., Qu, H., & Caucheteur, C. (2024). Easy-to-Fabricate UV-Glue-Based Cascaded Fabry–Perot Fiber Sensor Probe for Temperature Measurement. Photonics, 11(2), 111. https://doi.org/10.3390/photonics11020111