A Promising Route to Compact and Economic Sub-15 fs, PW-Level Ti:Sapphire Lasers
Abstract
:1. Introduction
2. Design of the Sub-15 fs PW Laser
3. Simulations of the Sub-15 fs PW Laser
3.1. High-Contrast Broadband Seed Source
3.2. Dual-Crystal OPCPA Front-End
3.3. High-Energy Ti:sa CPA Chain
3.4. Stretcher and Compressor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 219–221. [Google Scholar] [CrossRef]
- Dubietis, A.; Jonušauskas, G.; Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 1992, 88, 437–440. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Norvig, P.; Relman, D.A.; Goldstein, D.B.; Kammen, D.M.; Weinberger, D.R.; Aiello, L.C.; Church, G.; Hennessy, J.L.; Sachs, J.; Burrows, A.; et al. 2020 visions. Nature 2010, 463, 26. [Google Scholar]
- Gan, Z.; Yu, L.; Li, S.; Wang, C.; Liang, X.; Liu, Y.; Li, W.; Guo, Z.; Fan, Z.; Yuan, X.; et al. 200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse. Opt. Express 2017, 25, 5169–5178. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Rockwood, A.; Luther, B.M.; Hollinger, R.; Curtis, A.; Calvi, C.; Menoni, C.S.; Rocca, J.J. 0.85 PW laser operation at 3.3 Hz and high-contrast ultrahigh-intensity λ = 400 nm second-harmonic beamline. Opt. Lett. 2017, 42, 3828–3831. [Google Scholar] [CrossRef]
- Hooker, C.J.; Collier, J.L.; Chekhlov, O.; Clarke, R.J.; Divall, E.J.; Ertel, K.; Foster, P.; Hancock, S.; Hawkes, S.J.; Holligan, P.; et al. The Astra Gemini Petawatt Ti:Sapphire Laser. Rev. Laser Eng. 2009, 37, 443–448. [Google Scholar] [CrossRef]
- Kiriyama, H.; Pirozhkov, A.S.; Nishiuchi, M.; Fukuda, Y.; Ogura, K.; Sagisaka, A.; Miyasaka, Y.; Mori, M.; Sakaki, H.; Dover, N.P.; et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett. 2018, 43, 2595–2598. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, F.; Hu, J.; Yang, X.; Gui, J.; Ji, P.; Liu, X.; Wang, C.; Liu, Y.; Lu, X.; et al. The 1 PW/0.1 Hz laser beamline in SULF facility. High Power Laser Sci. Eng. 2020, 8, e4. [Google Scholar] [CrossRef]
- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; Lee, S.K.; Nam, C.H. Realization of laser intensity over 1023 W/cm2. Optica 2021, 8, 630–635. [Google Scholar] [CrossRef]
- Radier, C.; Chalus, O.; Charbonneau, M.; Thambirajah, S.; Deschamps, G.; David, S.; Barbe, J.; Etter, E.; Matras, G.; Ricaud, S.; et al. 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Sci. Eng. 2022, 10, e21. [Google Scholar] [CrossRef]
- Bleotu, P.G.; Wheeler, J.; Papadopoulos, D.; Chabanis, M.; Prudent, J.; Frotin, M.; Martin, L.; Lebas, N.; Freneaux, A.; Beluze, A.; et al. Spectral broadening for multi-Joule pulse compression in the APOLLON Long Focal Areafacility. High Power Laser Sci. Eng. 2022, 10, e9. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Zhang, Z.; Li, J.; Zhu, F.; Wan, W.; He, F.; Wei, H.; Chen, K.; Yan, P. High peak power femtosecond cylindrical vector beams generation in a chirped-pulse amplification laser system. Chin. Opt. Lett. 2022, 20, 031405. [Google Scholar] [CrossRef]
- Borneis, S.; Laštovička, T.; Sokol, M.; Jeong, T.M.; Condamine, F.; Renner, O.; Tikhonchuk, V.; Bohlin, H.; Fajstavr, A.; Hernandez, J.C.; et al. Design, installation and commissioning of the ELI-Beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3. High Power Laser Sci. Eng. 2021, 9, e30. [Google Scholar] [CrossRef]
- Kiriyama, H.; Miyasaka, Y.; Kon, A.; Nishiuchi, M.; Sagisaka, A.; Sasao, H.; Pirozhkov, A.S.; Fukuda, Y.; Ogura, K.; Kondo, K.; et al. Laser Output Performance and Temporal Quality Enhancement at the J-KAREN-P Petawatt Laser Facility. Photonics 2023, 10, 997. [Google Scholar] [CrossRef]
- Malaca, B.; Pardal, M.; Ramsey, D.; Pierce, J.R.; Weichman, K.; Andriyash, I.A.; Mori, W.B.; Palastro, J.P.; Fonseca, R.A.; Vieira, J. Coherence and superradiance from a plasma-based quasiparticle accelerator. Nat. Photonics 2024, 18, 39–45. [Google Scholar] [CrossRef]
- Habib, A.F.; Manahan, G.G.; Scherkl, P.; Heinemann, T.; Sutherland, A.; Altuiri, R.; Alotaibi, B.M.; Litos, M.; Cary, J.; Raubenheimer, T.; et al. Attosecond-Angstrom free-electron-laser towards the cold beam limit. Nat. Commun. 2023, 14, 1054. [Google Scholar] [CrossRef] [PubMed]
- Oumbarek Espinos, D.; Rondepierre, A.; Zhidkov, A.; Pathak, N.; Jin, Z.; Huang, K.; Nakanii, N.; Daito, I.; Kando, M.; Hosokai, T. Notable improvements on LWFA through precise laser wavefront tuning. Sci. Rep. 2023, 13, 18466. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, P.; Massimo, F.; Labate, L.; Gizzi, L.A. Accurate electron beam phase-space theory for ionization-injection schemes driven by laser pulses. High Power Laser Sci. Eng. 2022, 10, e15. [Google Scholar] [CrossRef]
- Hadjisolomou, P.; Shaisultanov, R.; Jeong, T.M.; Valenta, P.; Bulanov, S.V. Effect of ultrastrong magnetic fields on laser-produced gamma-ray flashes. Phys. Rev. Res. 2023, 5, 043153. [Google Scholar] [CrossRef]
- Kon, A.; Nishiuchi, M.; Fukuda, Y.; Kondo, K.; Ogura, K.; Sagisaka, A.; Miyasaka, Y.; Dover, N.P.; Kando, M.; Pirozhkov, A.S.; et al. Characterization of the plasma mirror system at the J-KAREN-P facility. High Power Laser Sci. Eng. 2022, 10, e25. [Google Scholar] [CrossRef]
- Cerullo, G.; De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 2003, 74, 1–18. [Google Scholar] [CrossRef]
- Witte, S.; Eikema, K.S.E. Ultrafast Optical Parametric Chirped-Pulse Amplification. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 296–307. [Google Scholar] [CrossRef]
- Bucht, S.; Roides, R.G.; Webb, B.; Haberberger, D.; Feng, C.; Froula, D.H.; Bromage, J. Achieving 100 GW idler pulses from an existing petawatt optical parametric chirped pulse amplifier. Opt. Express 2023, 31, 8205–8216. [Google Scholar] [CrossRef]
- Kostyukov, I.Y.; Khazanov, E.A.; Shaikin, A.A.; Litvak, A.G.; Sergeev, A.M. International Exawatt Center for Extreme Light Studies (XCELS): Laser System and Experiment Program. Bull. Lebedev Phys. Inst. 2023, 50, S635–S640. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, K.; Zuo, Y.; Zhu, Q.; Su, J.; Wang, X.; Wang, X.; Huang, X.; Jiang, X.; Jiang, D.; et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett. 2017, 42, 2014–2017. [Google Scholar] [CrossRef]
- Kessel, A.; Leshchenko, V.E.; Jahn, O.; Krüger, M.; Münzer, A.; Schwarz, A.; Pervak, V.; Trubetskov, M.; Trushin, S.A.; Krausz, F.; et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA. Optica 2018, 5, 434–442. [Google Scholar] [CrossRef]
- Bromage, J.; Bahk, S.W.; Begishev, I.A.; Dorrer, C.; Guardalben, M.J.; Hoffman, B.N.; Oliver, J.; Roides, R.G.; Schiesser, E.M.; Shoup, M.J., III; et al. Technology development for ultraintense all-OPCPA systems. High Power Laser Sci. Eng. 2019, 7, e4. [Google Scholar] [CrossRef]
- Cartlidge, E. The light fantastic. Science 2018, 359, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Lu, X.; Chen, J.; Long, Y.; Li, W.; Chen, H.; Chen, X.; Bai, P.; Li, Y.; et al. 13.4 fs, 0.1 Hz OPCPA Front End for the 100 PW-Class Laser Facility. Ultrafast Sci. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Papadopoulos, D.N.; Zou, J.P.; Le Blanc, C.; Ranc, L.; Druon, F.; Martin, L.; Fréneaux, A.; Beluze, A.; Lebas, N.; Chabanis, M.; et al. First Commissioning Results of the Apollon Laser on the 1 PW Beam Line. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Sung, J.H.; Lee, H.W.; Yoo, J.Y.; Yoon, J.W.; Lee, C.W.; Yang, J.M.; Son, Y.J.; Jang, Y.H.; Lee, S.K.; Nam, C.H. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 2017, 42, 2058–2061. [Google Scholar] [CrossRef]
- Lureau, F.; Matras, G.; Chalus, O.; Derycke, C.; Morbieu, T.; Radier, C.; Casagrande, O.; Laux, S.; Ricaud, S.; Rey, G.; et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability. High Power Laser Sci. Eng. 2020, 8, e43. [Google Scholar] [CrossRef]
- Aoyama, M.; Yamakawa, K.; Akahane, Y.; Ma, J.; Inoue, N.; Ueda, H.; Kiriyama, H. 0.85-PW, 33-fs Ti:sapphire laser. Opt. Lett. 2003, 28, 1594–1596. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, X.; Yang, X.; Bai, P.; Wu, F.; Zhang, Z.; Chen, H.; Yang, X.; Qian, J.; Gui, J.; et al. Performance improvement of a nonlinear temporal filter by using cascaded femtosecond optical parametric amplification. Opt. Express 2021, 29, 37443–37452. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Liu, X.; Huang, Z.; Lu, X.; Liu, K.; Liu, Y.; Wang, X.; Xu, Y.; Leng, Y. Suppressing the spectral gain-narrowing effect of high-gain Ti:Sapphire amplifiers by a novel polarization-encoded filter. Opt. Commun. 2021, 495, 127086. [Google Scholar] [CrossRef]
- Wu, F.; Hu, J.; Liu, X.; Zhang, Z.; Bai, P.; Wang, X.; Zhao, Y.; Yang, X.; Xu, Y.; Wang, C.; et al. Dispersion management for a 100 PW level laser using a mismatched-grating compressor. High Power Laser Sci. Eng. 2022, 10, e38. [Google Scholar] [CrossRef]
- Wu, F.; Liu, X.; Wang, X.; Hu, J.; Lu, X.; Li, Y.; Peng, Y.; Liu, Y.; Chen, J.; Long, Y.; et al. Use of double-grating Offner stretcher for dispersion control in petawatt level optical parametric chirped pulse amplification systems. Opt. Laser Technol. 2022, 148, 107791. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Liu, X.; Long, Y.; Li, W.; Chen, X.; Bai, P.; Hu, J.; Wu, F.; Zhang, Z.; et al. High-efficiency, ultra-broadband ns-OPCPA with high temporal contrast based on dual-crystal scheme. Appl. Phys. B 2023, 129, 55. [Google Scholar] [CrossRef]
- Wang, X.; Bai, P.; Liu, Y.; Zhang, H.; Tang, Y.; Wang, X.; Zhang, X.; Fan, C.; Yao, B.; Sun, Y.; et al. Suppressing scattering-induced nanosecond pre-pulses in Ti:sapphire multi-pass amplifiers. Opt. Lett. 2022, 47, 5164–5167. [Google Scholar] [CrossRef]
- Archipovaite, G.; Galletti, M.; Oliveira, P.; Galimberti, M.; Frackiewicz, A.; Musgrave, I.; Hernandez-Gomez, C. 880 nm, 22 fs, 1 mJ pulses at 100 Hz as an OPCPA front end for Vulcan laser facility. Opt. Commun. 2020, 474, 126072. [Google Scholar] [CrossRef]
- Zou, J.P.; Coïc, H.; Papadopoulos, D. Spatiotemporal coupling investigations for Ti:sapphire-based multi-PW lasers. High Power Laser Sci. Eng. 2022, 10, e5. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Xu, Y.; Yu, L.; Wu, F.; Zhang, Z.; Yang, X.; Ji, P.; Bai, P.; Liang, X.; et al. Numerical analysis of the DKDP-based high-energy optical parametric chirped pulse amplifier for a 100 PW class laser. Appl. Opt. 2021, 60, 3842–3848. [Google Scholar] [CrossRef]
- Frantz, L.M.; Nodvik, J.S. Theory of Pulse Propagation in a Laser Amplifier. J. Appl. Phys. 1963, 34, 2346–2349. [Google Scholar] [CrossRef]
- Cao, H.; Tóth, S.; Kalashnikov, M.; Chvykov, V.; Osvay, K. Highly efficient, cascaded extraction optical parametric amplifier. Opt. Express 2018, 26, 7516–7527. [Google Scholar] [CrossRef] [PubMed]
- Oien, A.L.; McKinnie, I.T.; Jain, P.; Russell, N.A.; Warrington, D.M.; Gloster, L.A.W. Efficient, low-threshold collinear and noncollinear β-barium borate optical parametric oscillators. Opt. Lett. 1997, 22, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Verluise, F.; Laude, V.; Cheng, Z.; Spielmann, C.; Tournois, P. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping. Opt. Lett. 2000, 25, 575–577. [Google Scholar] [CrossRef]
Amplifier | Input Energy | Seed Size | Pump Energy (Intensity) | Output Energy |
---|---|---|---|---|
PA | 17 mJ | 16 mm | 6 J (2.49 J/cm2) | 2 J |
FA | 2 J | 50 mm | 50 J (2.27 J/cm2) | 22 J |
GDD | TOD | FOD | |
---|---|---|---|
Stretcher | 2,914,935 fs2 | −5,632,395 fs3 | 17,235,789 fs4 |
OPP | −83 fs2 | −1073 fs3 | −2815 fs4 |
Material | 29,545 fs2 | 20,966 fs3 | −5319 fs4 |
Compressor | −2,944,406 fs2 | 5,612,264 fs3 | −17,225,547 fs4 |
Residual | −9 fs2 | −238 fs3 | 2108 fs4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Hu, J.; Zhang, Z.; Zhao, Y.; Bai, P.; Chen, H.; Chen, X.; Xu, Y.; Leng, Y.; Li, R. A Promising Route to Compact and Economic Sub-15 fs, PW-Level Ti:Sapphire Lasers. Photonics 2024, 11, 121. https://doi.org/10.3390/photonics11020121
Wu F, Hu J, Zhang Z, Zhao Y, Bai P, Chen H, Chen X, Xu Y, Leng Y, Li R. A Promising Route to Compact and Economic Sub-15 fs, PW-Level Ti:Sapphire Lasers. Photonics. 2024; 11(2):121. https://doi.org/10.3390/photonics11020121
Chicago/Turabian StyleWu, Fenxiang, Jiabing Hu, Zongxin Zhang, Yang Zhao, Peile Bai, Haidong Chen, Xun Chen, Yi Xu, Yuxin Leng, and Ruxin Li. 2024. "A Promising Route to Compact and Economic Sub-15 fs, PW-Level Ti:Sapphire Lasers" Photonics 11, no. 2: 121. https://doi.org/10.3390/photonics11020121
APA StyleWu, F., Hu, J., Zhang, Z., Zhao, Y., Bai, P., Chen, H., Chen, X., Xu, Y., Leng, Y., & Li, R. (2024). A Promising Route to Compact and Economic Sub-15 fs, PW-Level Ti:Sapphire Lasers. Photonics, 11(2), 121. https://doi.org/10.3390/photonics11020121