Efficient Identification of Crude Oil via Combined Terahertz Time-Domain Spectroscopy and Machine Learning
Abstract
:1. Introduction
2. Experiment
2.1. Spectral Acquisition
2.2. Principal Component Analysis (PCA)
2.3. Convolutional Neural Networks (CNNs)
3. Results and Discussion
3.1. Terahertz Spectra of Different Origin Crude Oils
3.2. PCA-CNN Classification Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vieira, L.V.; Rainha, K.P.; de Castro, E.V.R.; Filgueiras, P.R.; Carneiro, M.T.W.D.; Brandão, G.P. Exploratory Data Analysis Using API Gravity and V and Ni Contents to Determine the Origins of Crude Oil Samples from Petroleum Fields in the Espírito Santo Basin (Brazil). Microchem. J. 2016, 124, 26–30. [Google Scholar] [CrossRef]
- López, L.; Lo Mónaco, S. Geochemical Implications of Trace Elements and Sulfur in the Saturate, Aromatic and Resin Fractions of Crude Oil from the Mara and Mara Oeste Fields, Venezuela. Fuel 2004, 83, 365–374. [Google Scholar] [CrossRef]
- Duyck, C.; Miekeley, N.; Porto da Silveira, C.L.; Szatmari, P. Trace Element Determination in Crude Oil and Its Fractions by Inductively Coupled Plasma Mass Spectrometry Using Ultrasonic Nebulization of Toluene Solutions. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1979–1990. [Google Scholar] [CrossRef]
- Akinlua, A.; Sigedle, A.; Buthelezi, T.; Fadipe, O.A. Trace Element Geochemistry of Crude Oils and Condensates from South African Basins. Mar. Pet. Geol. 2015, 59, 286–293. [Google Scholar] [CrossRef]
- Ellrich, J.; Hirner, A.; Stärk, H. Distribution of Trace Elements in Crude Oils from Southern Germany. Chem. Geol. 1985, 48, 313–323. [Google Scholar] [CrossRef]
- Rodrigues, É.V.A.; Silva, S.R.C.; Romão, W.; Castro, E.V.R.; Filgueiras, P.R. Determination of Crude Oil Physicochemical Properties by High-Temperature Gas Chromatography Associated with Multivariate Calibration. Fuel 2018, 220, 389–395. [Google Scholar] [CrossRef]
- El Nady, M.M.; El-Naggar, A.Y. Occurrences and Distributions of Normal Alkanes and Biological Markers to Detections of Origin, Environments, and Maturation of Crude Oils in El Hamed Oilfield, Gulf of Suez, Egypt. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 3338–3347. [Google Scholar] [CrossRef]
- Gajdosechova, Z.; Dutta, M.; Lopez-Linares, F.; de Azevedo Mello, P.; Dineck Iop, G.; Moraes Flores, E.M.; Mester, Z.; Pagliano, E. Determination of Chloride in Crude Oil Using Isotope Dilution GC–MS: A Comparative Study. Fuel 2021, 285, 119167. [Google Scholar] [CrossRef]
- Niu, Z.; Meng, W.; Wang, Y.; Wang, X.; Li, Z.; Wang, J.; Liu, H.; Wang, X. Characteristics of Trace Elements in Crude Oil in the East Section of the South Slope of Dongying Sag and Their Application in Crude Oil Classification. J. Pet. Sci. Eng. 2022, 209, 109833. [Google Scholar] [CrossRef]
- Santos, J.M.; Wisniewski, A., Jr.; Eberlin, M.N.; Schrader, W. Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil. Energies 2018, 11, 2766. [Google Scholar] [CrossRef]
- Wang, C.; Shi, X.; Li, W.; Wang, L.; Zhang, J.; Yang, C.; Wang, Z. Oil Species Identification Technique Developed by Gabor Wavelet Analysis and Support Vector Machine Based on Concentration-Synchronous-Matrix-Fluorescence Spectroscopy. Mar. Pollut. Bull. 2016, 104, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-D.; Wang, C.-Y.; Fan, X.-M.; Zhang, J.-L.; Yang, C.; Wang, Z.-D. Oil Source Recognition Technology Using Concentration-Synchronous-Matrix-Fluorescence Spectroscopy Combined with 2D Wavelet Packet and Probabilistic Neural Network. Sci. Total Environ. 2018, 616, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Steffens, J.; Landulfo, E.; Courrol, L.C.; Guardani, R. Application of Fluorescence to the Study of Crude Petroleum. J. Fluoresc. 2011, 21, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Flórez, M.A.; Guerrero, J.E.; Cabanzo, R.; Mejía-Ospino, E. SARA Analysis and Conradson Carbon Residue Prediction of Colombian Crude Oils Using PLSR and Raman Spectroscopy. J. Pet. Sci. Eng. 2017, 156, 966–970. [Google Scholar] [CrossRef]
- Sadeghtabaghi, Z.; Rabbani, A.R.; Hemmati-Sarapardeh, A. Experimental Evaluation of Thermal Maturity of Crude Oil Samples by Asphaltene Fraction: Raman Spectroscopy and X-Ray Diffraction. J. Pet. Sci. Eng. 2021, 199, 108269. [Google Scholar] [CrossRef]
- Álvarez, E.; Trejo, F.; Marroquín, G.; Ancheyta, J. The Effect of Solvent Washing on Asphaltenes and Their Characterization. Pet. Sci. Technol. 2015, 33, 265–271. [Google Scholar] [CrossRef]
- Lam-Maldonado, M.; Melo-Banda, J.A.; Macias-Ferrer, D.; Portales-Martínez, B.; Dominguez, J.M.; Silva-Rodrigo, R.; Páramo-García, U.; Mata-Padilla, J.M. Transition Metal Nanocatalysts by Modified Inverse Microemulsion for the Heavy Crude Oil Upgrading at Reservoir. Catal. Today 2020, 349, 81–87. [Google Scholar] [CrossRef]
- Li, J.; Chu, X.; Tian, S.; Lu, W. The Identification of Highly Similar Crude Oils by Infrared Spectroscopy Combined with Pattern Recognition Method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 112, 457–462. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khanmohammadi Khorrami, M.; Vatani, A.; Ghasemzadeh, H.; Vatanparast, H.; Bahramian, A.; Fallah, A. Rapid Determination and Classification of Crude Oils by ATR-FTIR Spectroscopy and Chemometric Methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 232, 118157. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, E.; Zhang, D.; Sun, D.; Yang, M.; Zheng, Z.; Zhang, Z.; Gao, L.; Panezai, S.; Qiu, K. Free Field of View Infrared Digital Holography for Mineral Crystallization. Cryst. Growth Des. 2023, 23, 7992–8008. [Google Scholar] [CrossRef]
- Sun, P.; Bao, K.; Li, H.; Li, F.; Wang, X.; Cao, L.; Li, G.; Zhou, Q.; Tang, H.; Bao, M. An Efficient Classification Method for Fuel and Crude Oil Types Based on m/z 256 Mass Chromatography by COW-PCA-LDA. Fuel 2018, 222, 416–423. [Google Scholar] [CrossRef]
- Matoug, M.M.; Gordon, R. Crude Oil Asphaltenes Studied by Terahertz Spectroscopy. ACS Omega 2018, 3, 3406–3412. [Google Scholar] [CrossRef]
- Garmarudi, A.B.; Khanmohammadi, M.; Fard, H.G.; de la Guardia, M. Origin Based Classification of Crude Oils by Infrared Spectrometry and Chemometrics. Fuel 2019, 236, 1093–1099. [Google Scholar] [CrossRef]
- Fonseca, A.M.; Biscaya, J.L.; Aires-de-Sousa, J.; Lobo, A.M. Geographical Classification of Crude Oils by Kohonen Self-Organizing Maps. Anal. Chim. Acta 2006, 556, 374–382. [Google Scholar] [CrossRef]
- Chiaberge, S.; Fiorani, T.; Savoini, A.; Bionda, A.; Ramello, S.; Pastori, M.; Cesti, P. Classification of Crude Oil Samples through Statistical Analysis of APPI FTICR Mass Spectra. Fuel Process. Technol. 2013, 106, 181–185. [Google Scholar] [CrossRef]
- Fortunato de Carvalho Rocha, W.; Schantz, M.M.; Sheen, D.A.; Chu, P.M.; Lippa, K.A. Unsupervised Classification of Petroleum Certified Reference Materials and Other Fuels by Chemometric Analysis of Gas Chromatography-Mass Spectrometry Data. Fuel 2017, 197, 248–258. [Google Scholar] [CrossRef] [PubMed]
- van Exter, M.; Grischkowsky, D.R. Characterization of an Optoelectronic Terahertz Beam System. IEEE Trans. Microw. Theory Tech. 1990, 38, 1684–1691. [Google Scholar] [CrossRef]
- Zheng, Z.-P.; Fan, W.-H.; Liang, Y.-Q.; Yan, H. Application of Terahertz Spectroscopy and Molecular Modeling in Isomers Investigation: Glucose and Fructose. Opt. Commun. 2012, 285, 1868–1871. [Google Scholar] [CrossRef]
- Zhan, H.; Chen, M.; Zhao, K.; Li, Y.; Miao, X.; Ye, H.; Ma, Y.; Hao, S.; Li, H.; Yue, W. The Mechanism of the Terahertz Spectroscopy for Oil Shale Detection. Energy 2018, 161, 46–51. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.; Yang, Y.; Qi, J.; Zhang, G.; Ren, H.; Guo, W. First Principles Terahertz Spectroscopy of Molecular Crystals: The Crucial Role of Periodic Boundary Conditions Benchmarked with Experimental L-Ascorbic Acid Spectra. Phys. Chem. Chem. Phys. 2023, 25, 12252–12258. [Google Scholar] [CrossRef]
- Ma, H.; Yang, Y.; Jing, H.; Jiang, W.; Guo, W.; Ren, H. Semi-Empirical Model to Retrieve Finite Temperature Terahertz Absorption Spectra Using Morse Potential. Chin. J. Chem. Phys. 2023, 36, 15–24. [Google Scholar] [CrossRef]
- Jin, W.-J.; Zhao, K.; Yang, C.; Xu, C.-H.; Ni, H.; Chen, S.-H. Experimental Measurements of Water Content in Crude Oil Emulsions by Terahertz Time-Domain Spectroscopy. Appl. Geophys. 2013, 10, 506–509. [Google Scholar] [CrossRef]
- Zhan, H.; Wu, S.; Bao, R.; Ge, L.; Zhao, K. Qualitative Identification of Crude Oils from Different Oil Fields Using Terahertz Time-Domain Spectroscopy. Fuel 2015, 143, 189–193. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.-L. Highly Precise Determination of Optical Constants and Sample Thickness in Terahertz Time-Domain Spectroscopy. Appl. Opt. 1999, 38, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Dorney, T.D.; Baraniuk, R.G.; Mittleman, D.M. Material Parameter Estimation with Terahertz Time-Domain Spectroscopy. J. Opt. Soc. Am. A 2001, 18, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Sad, C.M.S.; da Silva, M.; dos Santos, F.D.; Pereira, L.B.; Corona, R.R.B.; Silva, S.R.C.; Portela, N.A.; Castro, E.V.R.; Filgueiras, P.R.; Lacerda, V. Multivariate Data Analysis Applied in the Evaluation of Crude Oil Blends. Fuel 2019, 239, 421–428. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Ren, H.; Li, H.; Zhang, Q.; Liang, L.; Guo, W.; Huang, F.; Luo, Y.; Jiang, J. A Machine Learning Vibrational Spectroscopy Protocol for Spectrum Prediction and Spectrum-Based Structure Recognition. Fundam. Res. 2021, 1, 488–494. [Google Scholar] [CrossRef]
- Qin, F.; Li, Q.; Zhan, H.; Jin, W.; Liu, H.; Zhao, K. Probing the Sulfur Content in Gasoline Quantitatively with Terahertz Time-Domain Spectroscopy. Sci. China Phys. Mech. Astron. 2014, 57, 1404–1406. [Google Scholar] [CrossRef]
Type of Classification | Instrumental Methods | Chemometric Methods | Neural Networks | Ref. |
---|---|---|---|---|
Characteristics of trace elements | ICP-MS, GS-MS | CA 1 | - | [9] |
API gravity | FT-ICR MS | - | - | [10] |
API gravity | ATR-FTIR | PCA, PLS-DA 2 | - | [19] |
Fuel and crude oil types | GS-MS | COW-PCA-LDA 3 | - | [21] |
Origin of crude oils | ATR-FTIR | PCA, SIMCA 4 | - | [23] |
Geographical origin | GS-MS | - | Kohonen self-organizing maps | [24] |
Well and geographical origin | APPI FT-ICR MS | PCA, HCA 5 | - | [25] |
Certified reference materials | GC-MS | MPCA 6, PARAFAC 7 | - | [26] |
Principal Component | Variance Contribution Rate/% | Cumulative Variance Contribution Rate/% |
---|---|---|
PC 1 | 99.688 | 99.688 |
PC 2 | 0.258 | 99.946 |
PC 3 | 0.033 | 99.979 |
Principal Component | Variance Contribution Rate/% | Cumulative Variance Contribution Rate/% |
---|---|---|
PC 1 | 74.485 | 74.485 |
PC 2 | 22.301 | 96.786 |
PC 3 | 2.069 | 98.855 |
PC 4 | 0.647 | 99.503 |
PC 5 | 0.239 | 99.742 |
PC 6 | 0.099 | 99.841 |
PC 7 | 0.052 | 99.893 |
PC 8 | 0.035 | 99.928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Ma, H.; Huang, H.; Li, D. Efficient Identification of Crude Oil via Combined Terahertz Time-Domain Spectroscopy and Machine Learning. Photonics 2024, 11, 155. https://doi.org/10.3390/photonics11020155
Yang F, Ma H, Huang H, Li D. Efficient Identification of Crude Oil via Combined Terahertz Time-Domain Spectroscopy and Machine Learning. Photonics. 2024; 11(2):155. https://doi.org/10.3390/photonics11020155
Chicago/Turabian StyleYang, Fan, Huifang Ma, Haiqing Huang, and Dehua Li. 2024. "Efficient Identification of Crude Oil via Combined Terahertz Time-Domain Spectroscopy and Machine Learning" Photonics 11, no. 2: 155. https://doi.org/10.3390/photonics11020155
APA StyleYang, F., Ma, H., Huang, H., & Li, D. (2024). Efficient Identification of Crude Oil via Combined Terahertz Time-Domain Spectroscopy and Machine Learning. Photonics, 11(2), 155. https://doi.org/10.3390/photonics11020155