Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints
Abstract
:1. Introduction
- By using an autoencoder based on an LBP (local binary pattern) to learn the detailed texture features of dark light images, the interference of brightness color information in the enhancement process is suppressed.
- The mask self-encoder based on the MCMC(Markov chain Monte Carlo) algorithm is used to effectively capture the important features in the data. The unsupervised feature learning method improves the robustness and adaptability of the enhancement process, and effectively filters the noise while reconstructing the image.
- The image difference evaluation function is designed as the loss function of the data and multiple autoencoder networks are combined in the enhancement network as a priori terms to constrain the enhancement process, and the losses based on image structural analysis and image difference are combined to guide the enhancement process of the dark light image to improve the enhancement effect and robustness.
2. Related work
- Traditional enhancement methods:
- Deep-learning methods:
- Prior learning based on mask auto-encoder:
3. Materials and Methods
3.1. Self-Encoding Prior Based on Image LBP Processing
3.2. Mask Autoencoder Prior Based on Markov Monte Carlo Method
3.3. Loss Function
3.3.1. Loss of Image Local Contrast Difference
3.3.2. Image Structural Loss and Minimum Absolute Deviation Loss
3.3.3. Image Integrity Loss
4. Experiment
4.1. Implementation Details and Datasets
4.2. Ablation Experiment
4.3. Referenced Quality Assessment
4.4. Quality Assessment without Reference
4.5. Experimental Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Wang, S.; Zhao, Y.; Tong, J.; Yang, T.; Li, D. Real-Time Obstacle Detection Method in the Driving Process of Driverless Rail Locomotives Based on DeblurGANv2 and Improved YOLOv4. Appl. Sci. 2023, 13, 3861. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, S.; Kong, Y.; Chen, J. Recent Advances in Surface Defect Inspection of Industrial Products Using Deep Learning Techniques. Int. J. Adv. Manuf. Technol. 2021, 113, 35–58. [Google Scholar] [CrossRef]
- Sreenu, G.; Saleem Durai, M.A. Intelligent Video Surveillance: A Review through Deep Learning Techniques for Crowd Analysis. J. Big Data 2019, 6, 48. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Feng, X.; Li, J.; Hua, Z.; Zhang, F. Low-Light Image Enhancement Based on Multi-Illumination Estimation. Appl. Intell. 2021, 51, 5111–5131. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, T.; Zhao, L.; Huang, D.; Zhang, Z. Low-Light Image Enhancement with Geometrical Sparse Representation. Appl. Intell. 2023, 53, 11019–11033. [Google Scholar] [CrossRef]
- Wu, Y.; Song, W.; Zheng, J.; Liu, F. N2PN: Non-Reference Two-Pathway Network for Low-Light Image Enhancement. Appl. Intell. 2022, 52, 3559–3576. [Google Scholar] [CrossRef]
- Land, E.H.; McCann, J.J. Lightness and Retinex Theory. J. Opt. Soc. Am. 1971, 61, 1. [Google Scholar] [CrossRef]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. Properties and Performance of a Center/Surround Retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. A Multiscale Retinex for Bridging the Gap between Color Images and the Human Observation of Scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef]
- Lee, C.-H.; Shih, J.-L.; Lien, C.-C.; Han, C.-C. Adaptive Multiscale Retinex for Image Contrast Enhancement. In Proceedings of the 2013 International Conference on Signal-Image Technology & Internet-Based Systems, Kyoto, Japan, 2–5 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 43–50. [Google Scholar]
- Petro, A.B.; Sbert, C.; Morel, J.-M. Multiscale Retinex. Image Process. Line 2014, 4, 71–88. [Google Scholar] [CrossRef]
- Wang, J.; He, N.; Lu, K. A New Single Image Dehazing Method with MSRCR Algorithm. In Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, Zhangjiajie, China, 19–21 August 2015; ACM: New York, NY, USA, 2015; pp. 1–4. [Google Scholar]
- Wang, J.; Lu, K.; Xue, J.; He, N.; Shao, L. Single Image Dehazing Based on the Physical Model and MSRCR Algorithm. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2190–2199. [Google Scholar] [CrossRef]
- Lu, K.; Zhang, L. TBEFN: A Two-Branch Exposure-Fusion Network for Low-Light Image Enhancement. IEEE Trans. Multimed. 2021, 23, 4093–4105. [Google Scholar] [CrossRef]
- Tao, L.; Zhu, C.; Xiang, G.; Li, Y.; Jia, H.; Xie, X. LLCNN: A Convolutional Neural Network for Low-Light Image Enhancement. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Wang, W.; Wei, C.; Yang, W.; Liu, J. GLADNet: Low-Light Enhancement Network with Global Awareness. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 751–755. [Google Scholar]
- Hai, J.; Xuan, Z.; Han, S.; Yang, R.; Hao, Y.; Zou, F.; Lin, F. R2RNet: Low-Light Image Enhancement via Real-Low to Real-Normal Network. J. Vis. Commun. Image Represent. 2023, 90, 103712. [Google Scholar] [CrossRef]
- Li, J.; Feng, X.; Hua, Z. Low-Light Image Enhancement via Progressive-Recursive Network. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4227–4240. [Google Scholar] [CrossRef]
- Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep Retinex Decomposition for Low-Light Enhancement. arXiv 2018, arXiv:1808.04560. [Google Scholar]
- Wu, W.; Weng, J.; Zhang, P.; Wang, X.; Yang, W.; Jiang, J. URetinex-Net: Retinex-Based Deep Unfolding Network for Low-Light Image Enhancement. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 5891–5900. [Google Scholar]
- Yang, W.; Wang, W.; Huang, H.; Wang, S.; Liu, J. Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement. IEEE Trans. Image Process. 2021, 30, 2072–2086. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Yue, Z.; Feng, F.; Chen, Q.; Liu, S.; Ma, J. MSR-Net: Low-Light Image Enhancement Using Deep Convolutional Network. arXiv 2017, arXiv:1711.02488. [Google Scholar]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-Inspired Unrolling with Cooperative Prior Architecture Search for Low-Light Image Enhancement. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 10556–10565. [Google Scholar]
- Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X.; Du, J.; Yang, M.-H. Low-Light Image Enhancement via a Deep Hybrid Network. IEEE Trans. Image Process. 2019, 28, 4364–4375. [Google Scholar] [CrossRef]
- Fan, M.; Wang, W.; Yang, W.; Liu, J. Integrating Semantic Segmentation and Retinex Model for Low-Light Image Enhancement. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; ACM: New York, NY, USA, 2020; pp. 2317–2325. [Google Scholar]
- Liu, L.; An, J.; Liu, J.; Yuan, S.; Chen, X.; Zhou, W.; Li, H.; Wang, Y.F.; Tian, Q. Low-Light Video Enhancement with Synthetic Event Guidance. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 1692–1700. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Zha, Z.-J.; Zhang, J.; Xiong, Z.; Zhang, W.; Wu, F. Progressive Retinex: Mutually Reinforced Illumination-Noise Perception Network for Low Light Image Enhancement. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollar, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 15979–15988. [Google Scholar]
- Chen, X.; Ding, M.; Wang, X.; Xin, Y.; Mo, S.; Wang, Y.; Han, S.; Luo, P.; Zeng, G.; Wang, J. Context Autoencoder for Self-Supervised Representation Learning. Int. J. Comput. Vis. 2023, 132, 208–223. [Google Scholar] [CrossRef]
- Dong, X.; Bao, J.; Zhang, T.; Chen, D.; Zhang, W.; Yuan, L.; Chen, D.; Wen, F.; Yu, N.; Guo, B. PeCo: Perceptual Codebook for BERT Pre-Training of Vision Transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 552–560. [Google Scholar] [CrossRef]
- Wei, C.; Fan, H.; Xie, S.; Wu, C.-Y.; Yuille, A.; Feichtenhofer, C. Masked Feature Prediction for Self-Supervised Visual Pre-Training. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 14648–14658. [Google Scholar]
- Assran, M.; Caron, M.; Misra, I.; Bojanowski, P.; Bordes, F.; Vincent, P.; Joulin, A.; Rabbat, M.; Ballas, N. Masked Siamese Networks for Label-Efficient Learning. In European Conference on Computer Vision; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Prat, A.; Sautory, T.; Navarro-Martinez, S. A Priori Sub-Grid Modelling Using Artificial Neural Networks. Int. J. Comput. Fluid Dyn. 2020, 34, 397–417. [Google Scholar] [CrossRef]
- E, W.; Ma, C.; Wu, L. A Priori Estimates of the Population Risk for Two-Layer Neural Networks. Commun. Math. Sci. 2019, 17, 1407–1425. [Google Scholar] [CrossRef]
- Huang, W.; Huang, Y.; Wu, Z.; Yin, J.; Chen, Q. A Multi-Kernel Mode Using a Local Binary Pattern and Random Patch Convolution for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4607–4620. [Google Scholar] [CrossRef]
- Gabrié, M.; Rotskoff, G.M.; Vanden-Eijnden, E. Adaptive Monte Carlo Augmented with Normalizing Flows. Proc. Natl. Acad. Sci. USA 2022, 119, e2109420119. [Google Scholar] [CrossRef]
- Karamanis, M.; Beutler, F.; Peacock, J.A.; Nabergoj, D.; Seljak, U. Accelerating Astronomical and Cosmological Inference with Preconditioned Monte Carlo. Mon. Not. R. Astron. Soc. 2022, 516, 1644–1653. [Google Scholar] [CrossRef]
- Nemeth, C.; Fearnhead, P. Stochastic Gradient Markov Chain Monte Carlo. J. Am. Stat. Assoc. 2021, 116, 433–450. [Google Scholar] [CrossRef]
Method | No Prior | MCMC Prior | LBP Prior | Double Priors |
---|---|---|---|---|
LPIPS | 0.1877 | 0.1535 | 0.1428 | 0.1302 |
SSIM | 0.7766 | 0.7998 | 0.7764 | 0.8122 |
PSNR(dB) | 15.95 | 17.20 | 17.56 | 20.42 |
Method | PSNR (dB) | SSIM | LPIPS (alex) | LPIPS (vgg) | NIQE |
---|---|---|---|---|---|
DALE | 17.39 | 0.750 | 0.0832 | 0.1243 | 15.054 |
DRBN | 16.42 | 0.751 | 0.1197 | 0.2215 | 12.845 |
DSLR | 14.79 | 0.607 | 0.0861 | 0.1768 | 9.919 |
EnlightenGAN | 17.50 | 0.666 | 0.1300 | 0.1743 | 10.001 |
RUAS | 15.32 | 0.613 | 0.1440 | 0.2310 | 10.889 |
SGM | 17.23 | 0.763 | 0.2820 | 0.3452 | 13.209 |
ZeroDCE | 14.12 | 0.583 | 0.1362 | 0.1776 | 12.152 |
ZeroDCE++ | 14.37 | 0.589 | 0.1313 | 0.1689 | 11.876 |
KinD | 16.44 | 0.789 | 0.1413 | 0.1695 | 9.658 |
KinD++ | 16.58 | 0.766 | 0.1590 | 0.1807 | 10.685 |
Ours | 20.42 | 0.8122 | 0.1302 | 0.1665 | 10.922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, L.; Dong, J.; Li, Q.; Huang, J.; Chen, W.; Wang, H. Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints. Photonics 2024, 11, 190. https://doi.org/10.3390/photonics11020190
Guan L, Dong J, Li Q, Huang J, Chen W, Wang H. Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints. Photonics. 2024; 11(2):190. https://doi.org/10.3390/photonics11020190
Chicago/Turabian StyleGuan, Lei, Jiawei Dong, Qianxi Li, Jijiang Huang, Weining Chen, and Hao Wang. 2024. "Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints" Photonics 11, no. 2: 190. https://doi.org/10.3390/photonics11020190
APA StyleGuan, L., Dong, J., Li, Q., Huang, J., Chen, W., & Wang, H. (2024). Dark Light Image-Enhancement Method Based on Multiple Self-Encoding Prior Collaborative Constraints. Photonics, 11(2), 190. https://doi.org/10.3390/photonics11020190