On-Chip Lasers for Silicon Photonics
Abstract
:1. Introduction
2. Group-IV-Material-Based Lasers
2.1. Ge-on-Si Lasers
2.2. GeSn Lasers
3. III–V-Material-Based Lasers
3.1. Heterogeneous Integration
3.1.1. D2W Bonding
3.1.2. Adhesive Bonding
3.2. Monolithic Integration
4. 2D-Material-Based Lasers
4.1. Photonic Crystal Cavity-Based Nanolasers
4.2. Microdisk Cavity-Based Nanolasers
5. Colloidal Quantum-Dot Lasers
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagarajan, R.; Joyner, C.H.; Schneider, R.P.; Bostak, J.S.; Butrie, T.; Dentai, A.G.; Dominic, V.G.; Evans, P.W.; Kato, M.; Kauffman, M.; et al. Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 50–65. [Google Scholar] [CrossRef]
- Arafin, S.; Coldren, L.A. Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–12. [Google Scholar] [CrossRef]
- Zhou, Z.; Ou, X.; Fang, Y.; Alkhazraji, E.; Xu, R.; Wan, Y.; Bowers, J.E. Prospects and applications of on-chip lasers. Elight 2023, 3, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, G.; Ng, D.K.T.; Lim, L.W.; Xue, J.; Ho, C.P.; Fu, Y.H.; Lee, L.Y.T. Integrated lasers on silicon at communication wavelength: A progress review. Adv. Opt. Mater. 2022, 10, 2201008. [Google Scholar] [CrossRef]
- Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Lockwood, D.J.; Pavesi, L. Silicon Photonics IV; Springer: Berlin/Heidelberg, Germany, 2021; Volume 139. [Google Scholar] [CrossRef]
- Dai, D.; Bauters, J.; Bowers, J.E. Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction. Light Sci. Appl. 2012, 1, e1. [Google Scholar] [CrossRef]
- Heck, M.J.R.; Bauters, J.F.; Davenport, M.L.; Spencer, D.T.; Bowers, J.E. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev. 2014, 8, 667–686. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Qiu, C.; Guo, X.; Sun, L. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Adv. Mater. Technol. 2020, 5, 1901153. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef]
- Witzens, J. High-speed silicon photonics modulators. Proc. IEEE 2018, 106, 2158–2182. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Piels, M.; Bowers, J.E. Photodetectors for silicon photonic integrated circuits. In Photodetectors; Elsevier: Amsterdam, The Netherlands, 2023; pp. 419–436. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Yu, L.; Li, J.; Zhang, M.; Li, H.; Shi, Y.; Dai, D. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci. Appl. 2021, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Mauthe, S.; Baumgartner, Y.; Sousa, M.; Ding, Q.; Rossell, M.D.; Schenk, A.; Czornomaz, L.; Moselund, K.E. High-speed III–V nanowire photodetector monolithically integrated on Si. Nat. Commun. 2020, 11, 4565. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Tiwari, P.; Mauthe, S.; Schmid, H.; Sousa, M.; Scherrer, M.; Baumann, M.; Bitachon, B.I.; Leuthold, J.; Gotsmann, B.; et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat. Commun. 2022, 13, 909. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, J.; Wang, X. On-chip Ge, InGaAs, and colloidal quantum dot photodetectors: Comparisons for application in silicon photonics. J. Opt. Soc. Am. B 2021, 38, 194–200. [Google Scholar] [CrossRef]
- Zhou, Z.; Yin, B.; Michel, J. On-chip light sources for silicon photonics. Light Sci. Appl. 2015, 4, e358. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Pan, B. Silicon photonics for high-capacity data communications. Photonics Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Liu, J.; Kimerling, L.C.; Michel, J. Monolithic Ge-on-Si Lasers for Large-Scale Electronic-Photonic Integration. Semicond. Sci. Technol. 2012, 27, 094006. [Google Scholar] [CrossRef]
- Moutanabbir, O.; Assali, S.; Gong, X.; O’Reilly, E.; Broderick, C.A.; Marzban, B.; Witzens, J.; Du, W.; Yu, S.-Q.; Chelnokov, A.; et al. Monolithic Infrared Silicon Photonics: The Rise of (Si) GeSn Semiconductors. Appl. Phys. Lett. 2021, 118, 110501. [Google Scholar] [CrossRef]
- Ye, H.; Yu, J. Germanium Epitaxy on Silicon. Sci. Technol. Adv. Mater. 2014, 15, 024601. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Pan, D.; Wang, X.; Kimerling, L.C.; Koch, T.L.; Michel, J. Tensile-Strained, n-Type Ge as a Gain Medium for Monolithic Laser Integration on Si. Opt. Express 2007, 15, 11272–11277. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Camacho-Aguilera, R.; Kimerling, L.C.; Michel, J. Ge-on-Si Laser Operating at Room Temperature. Opt. Lett. 2010, 35, 679–681. [Google Scholar] [CrossRef]
- Liang, D.; Bowers, J.E. Recent Progress in Lasers on Silicon. Nat. Photonics 2010, 4, 511–517. [Google Scholar] [CrossRef]
- Reboud, V.; Buca, D.; Sigg, H.; Hartmann, J.M.; Ikonic, Z.; Pauc, N.; Calvo, V.; Rodriguez, P.; Chelnokov, A. Lasing in Group-IV Materials. In Silicon Photonics IV; Springer: Berlin/Heidelberg, Germany, 2021; pp. 105–195. [Google Scholar]
- Stange, D.; von den Driesch, N.; Zabel, T.; Armand-Pilon, F.; Rainko, D.; Marzban, B.; Zaumseil, P.; Hartmann, J.-M.; Ikonic, Z.; Capellini, G.; et al. GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers. ACS Photonics 2018, 5, 4628–4636. [Google Scholar] [CrossRef]
- Bao, S.; Kim, D.; Onwukaeme, C.; Gupta, S.; Saraswat, K.; Lee, K.H.; Kim, Y.; Min, Y.; Jung, Y.; Nam, D.; et al. Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat. Commun. 2017, 8, 1845. [Google Scholar] [CrossRef]
- Zhou, Y.; Dou, W.; Du, W.; Ojo, S.; Tran, H.; Ghetmiri, S.A.; Liu, J.; Sun, G.; Soref, R.; Margetis, J.; et al. Optically Pumped GeSn Lasers Operating at 270 K with Broad Waveguide Structures on Si. ACS Photonics 2019, 6, 1434–1441. [Google Scholar] [CrossRef]
- Chrétien, J.; Pauc, N.; Armand Pilon, F.; Bertrand, M.; Thai, Q.-M.; Casiez, L.; Bernier, N.; Dansas, H.; Gergaud, P.; Delamadeleine, E.; et al. GeSn Lasers Covering a Wide Wavelength Range Thanks to Uniaxial Tensile Strain. ACS Photonics 2019, 6, 2462–2469. [Google Scholar] [CrossRef]
- Elbaz, A.; Buca, D.; von den Driesch, N.; Pantzas, K.; Patriarche, G.; Zerounian, N.; Herth, E.; Checoury, X.; Sauvage, S.; Sagnes, I.; et al. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nat. Photonics 2020, 14, 375–382. [Google Scholar] [CrossRef]
- Wirths, S.; Geiger, R.; Von Den Driesch, N.; Mussler, G.; Stoica, T.; Mantl, S.; Ikonic, Z.; Luysberg, M.; Chiussi, S.; Hartmann, J.-M.; et al. Lasing in Direct-Bandgap GeSn Alloy Grown on Si. Nat. Photonics 2015, 9, 88–92. [Google Scholar] [CrossRef]
- Liu, J. Monolithically Integrated Ge-on-Si Active Photonics. Photonics 2014, 1, 162–197. [Google Scholar] [CrossRef]
- Zhou, Y.; Miao, Y.; Ojo, S.; Tran, H.; Abernathy, G.; Grant, J.M.; Amoah, S.; Salamo, G.; Du, W.; Liu, J.; et al. Electri-cally injected GeSn lasers on Si operating up to 100 K. Optica 2020, 7, 924–928. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Huang, D.; Tran, M.A.; Guo, J.; Wan, Y.; Xie, W.; Kurczveil, G.; Netherton, A.; Bowers, J.E.; et al. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 1–15. [Google Scholar] [CrossRef]
- Liang, D.; Bowers, J.E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light: Adv. Manuf. 2021, 2, 59–83. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.; Liu, S.; Liu, A.; Bowers, J.E. Quantum dot lasers and amplifiers on silicon: Recent advances and future developments. IEEE Nanotechnol. Mag. 2021, 15, 8–22. [Google Scholar] [CrossRef]
- Shang, C.; Wan, Y.; Selvidge, J.; Hughes, E.; Herrick, R.; Mukherjee, K.; Duan, J.; Grillot, F.; Chow, W.; Bowers, J.E.; et al. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photonics 2021, 8, 2555–2566. [Google Scholar] [CrossRef]
- He, S.; Li, M. Multi-scale texturing for a-Si/mc-Si thin-film tandem solar cells. AIP Adv. 2018, 8, 3. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, D.; Mukherjee, K.; Li, Y.; Zhang, C.; Kurczveil, G.; Huang, X.; Beausoleil, R.G. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci. Appl. 2019, 8, 93. [Google Scholar] [CrossRef]
- Bian, Y.; Ramachandran, K.; Peng, B.; Hedrick, B.; Mills, S.; Donegan, K.; Esopi, M.; Hirokawa, T.; Jacob, A.; Karra, V.; et al. Integrated laser attach technology on a monolithic silicon photonics platform. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 237–244. [Google Scholar] [CrossRef]
- Moscoso-Mártir, A.; Merget, F.; Mueller, J.; Hauck, J.; Romero-García, S.; Shen, B.; Lelarge, F.; Brenot, R.; Garreau, A.; Men-tovich, E.; et al. Hybrid silicon photonics flip-chip laser integration with vertical self-alignment. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim; Optica Publishing Group, Singapore, 31 July–4 August 2017; p. s2069. [Google Scholar] [CrossRef]
- Justice, J.; Bower, C.; Meitl, M.; Mooney, M.B.; Gubbins, M.A.; Corbett, B. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photonics 2012, 6, 610–614. [Google Scholar] [CrossRef]
- Zhang, J.; Muliuk, G.; Juvert, J.; Kumari, S.; Goyvaerts, J.; Haq, B.; Op de Beeck, C.; Kuyken, B.; Morthier, G.; Van Thourhout, D.; et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics 2019, 4, 11. [Google Scholar] [CrossRef]
- Roelkens, G.; Van Campenhout, J.; Brouckaert, J.; Van Thourhout, D.; Baets, R.; Romeo, P.R.; Regreny, P.; Kazmierczak, A.; Seassal, C.; Letartre, X.; et al. III-V/Si photonics by die-to-wafer bonding. Mater. Today 2007, 10, 36–43. [Google Scholar] [CrossRef]
- Sparks, D.; Queen, G.; Weston, R.; Woodward, G.; Putty, M.; Jordan, L.; Zarabadi, S.; Jayakar, K. Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder. J. Micromech. Microeng. 2001, 11, 630. [Google Scholar] [CrossRef]
- Maharbiz, M.M.; Cohn, M.B.; Howe, R.T.; Horowitz, R.; Pisano, A.P. Batch micropackaging by compression-bonded wafer-wafer transfer. In Proceedings of the Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), Orlando, FL, USA, 21 January 1999; IEEE: Piscataway, NJ, USA; pp. 482–489. [Google Scholar] [CrossRef]
- Jongbaeg, K.; Mu, C.; Liwei, L. Ultrasonic bonding of In/Au and Al/Al for hermetic sealing of MEMS packaging. In Proceedings of the Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266), Las Vegas, NV, USA, 24 January 2002. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Lin, L.; Najafi, K. Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging. J. Microelectromech. Syst. 2000, 9, 3–8. [Google Scholar] [CrossRef]
- Audet, S.A.; Edenfeld, K.M. Integrated sensor wafer-level packaging. In Proceedings of the International Solid State Sensors and Actuators Conference (Transducers ’97), Chicago, IL, USA, 19 June 1997; pp. 287–289. [Google Scholar] [CrossRef]
- Luo, X.; Cao, Y.; Song, J.; Hu, X.; Cheng, Y.; Li, C.; Liu, C.; Liow, T.-Y.; Yu, M.; Wang, H.; et al. High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits. Front. Mater. 2015, 2, 28. [Google Scholar] [CrossRef]
- Liang, D.; Huang, X.; Kurczveil, G.; Fiorentino, M.; Beausoleil, R.G. Integrated finely tunable microring laser on silicon. Nat. Photonics 2016, 10, 719–722. [Google Scholar] [CrossRef]
- Fujii, T.; Sato, T.; Takeda, K.; Hasebe, K.; Kakitsuka, T.; Matsuo, S. Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon. IET Optoelectron. 2015, 9, 151–157. [Google Scholar] [CrossRef]
- Wang, J.; Ren, X.; Deng, C.; Hu, H.; He, Y.; Cheng, Z.; Ma, H.; Wang, Q.; Huang, Y.; Yan, X. Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon. J. Light. Technol. 2015, 33, 3163–3169. [Google Scholar] [CrossRef]
- Wang, R.; Sprengel, S.; Boehm, G.; Muneeb, M.; Baets, R.; Amann, M.C.; Roelkens, G. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express 2016, 24, 21081–21089. [Google Scholar] [CrossRef]
- Shi, B.; Zhao, H.; Wang, L.; Song, B.; Brunelli, S.T.S.; Klamkin, J. Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon. Optica 2019, 6, 1507–1514. [Google Scholar] [CrossRef]
- Chow, W.W.; Wan, Y.; Bowers, J.E.; Grillot, F. Analysis of the spontaneous emission limited linewidth of an integrated III–V/SiN laser. Laser Photonics Rev. 2022, 16, 2100620. [Google Scholar] [CrossRef]
- Alkhazraji, E.; Chow, W.W.; Grillot, F.; Bowers, J.E.; Wan, Y. Linewidth narrowing in self-injection-locked on-chip lasers. Light Sci. Appl. 2023, 12, 162. [Google Scholar] [CrossRef]
- Uvin, S.; Kumari, S.; De Groote, A.; Verstuyft, S.; Lepage, G.; Verheyen, P.; Van Campenhout, J.; Morthier, G.; Van Thourhout, D.; Roelkens, G. 1.3 um InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt. Express 2018, 26, 18302–18309. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Xiang, C.; Guo, J.; Koscica, R.; Kennedy, M.J.; Selvidge, J.; Zhang, Z.; Chang, L.; Xie, W.; Bowers, J.E. High speed evanescent quantum-dot lasers on Si. Laser Photonics Rev. 2021, 15, 2100057. [Google Scholar] [CrossRef]
- Koscica, R.; Wan, Y.; He, W.; Kennedy, M.J.; Bowers, J.E. Heterogeneous integration of a III–V quantum dot laser on high thermal conductivity silicon carbide. Opt. Lett. 2023, 48, 2539–2542. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Guo, J.; Peters, J.D.; Kennedy, M.J.; Selvidge, J.; Morton, P.A.; Bowers, J.E. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 2020, 7, 20–21. [Google Scholar] [CrossRef]
- Shen, B.; Chang, L.; Liu, J.; Wang, H.; Yang, Q.F.; Xiang, C.; Bowers, J.E. Integrated turnkey soliton microcombs. Nature 2020, 582, 365–369. [Google Scholar] [CrossRef]
- Rizzo, A.; Novick, A.; Gopal, V.; Kim, B.Y.; Ji, X.; Daudlin, S.; Okawachi, Y.; Cheng, Q.; Lipson, M.; Bergman, K. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics 2023, 17, 781–790. [Google Scholar] [CrossRef]
- Xiang, C.; Liu, J.; Guo, J.; Chang, L.; Wang, R.N.; Weng, W.; Peters, J.; Xie, W.; Zhang, Z.; Bowers, J.E. Laser soliton microcombs heterogeneously integrated on silicon. Science 2021, 373, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Guo, J.; Jin, W.; Wu, L.; Peters, J.; Xie, W.; Bowers, J.E. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 2021, 12, 6650. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Jin, W.; Terra, O.; Dong, B.; Wang, H.; Wu, L.; Guo, J.; Morin, T.J.; Hughes, E.; Peters, J.; et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 2023, 620, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Roelkens, G.; Liu, L.; Liang, D.; Jones, R.; Fang, A.; Koch, B.; Bowers, J. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev. 2010, 4, 751–779. [Google Scholar] [CrossRef]
- Tang, M.; Park, J.-S.; Wang, Z.; Chen, S.; Jurczak, P.; Seeds, A.; Liu, H. Integration of III-V lasers on Si for Si photonics. Prog. Quantum Electron. 2019, 66, 1–18. [Google Scholar] [CrossRef]
- Wang, Z.; Van Gasse, K.; Moskalenko, V.; Latkowski, S.; Bente, E.; Kuyken, B.; Roelkens, G. A III-V-on-Si ultra-dense comb laser. Light: Sci. Appl. 2017, 6, e16260. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.C.; Jung, D.; Wan, Y.; Bowers, J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics 2018, 3, 031301. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 2015, 9, 837–842. [Google Scholar] [CrossRef]
- Windhorn, T.H.; Metze, G.M.; Tsaur, B.-Y.; Fan, J.C.C. AlGaAs double-heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate. Appl. Phys. Lett. 1984, 45, 309–311. [Google Scholar] [CrossRef]
- Windhorn, T.H.; Metze, G.M. Room-temperature operation of GaAs/AlGaAs diode lasers fabricated on a monolithic GaAs/Si substrate. Appl. Phys. Lett. 1985, 47, 1031–1033. [Google Scholar] [CrossRef]
- Fischer, R.; Kopp, W.; Morkoc, H.; Pion, M.; Specht, A.; Burkhart, G.; Appelman, H.; McGougan, D.; Rice, R. Low threshold laser operation at room temperature in GaAs/(Al, Ga) As structures grown directly on (100) Si. Appl. Phys. Lett. 1986, 48, 1360–1361. [Google Scholar] [CrossRef]
- Razeghi, M.; Defour, M.; Omnes, F.; Maurel, P.; Chazelas, J.; Brillouet, F. First GaInAsP-InP double-heterostructure laser emitting at 1.27 um on a silicon substrate. Appl. Phys. Lett. 1988, 53, 725–727. [Google Scholar] [CrossRef]
- Razeghi, M.; Defour, M.; Blondeau, R.; Omnes, F.; Maurel, P.; Acher, O.; Brillouet, F.; Fan, J.C.; Salerno, J. First cw op-eration of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate. Appl. Phys. Lett. 1988, 53, 2389–2390. [Google Scholar] [CrossRef]
- Besancon, C.; Néel, D.; Make, D.; Ramírez, J.M.; Cerulo, G.; Vaissiere, N.; Decobert, J. AlGaInAs multi-quantum well lasers on silicon-on-insulator photonic integrated circuits based on InP-seed-bonding and epitaxial regrowth. Appl. Sci. 2021, 12, 263. [Google Scholar] [CrossRef]
- Egawa, T.; Ogawa, A.; Jimbo, T.; Umeno, M. AlGaAs/GaAs laser diodes with GaAs islands active regions on Si grown by droplet epitaxy. Jpn. J. Appl. Phys. 1998, 37, 1552. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; et al. Electrically pumped continuous-wave III--V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Norman, J.; Kennedy, M.J.; Selvidge, J.; Li, Q.; Wan, Y.; Liu, A.Y.; Callahan, P.G.; Echlin, M.P.; Pollock, T.M.; Lau, K.M.; et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt. Express 2017, 25, 3927–3934. [Google Scholar] [CrossRef]
- Wei, W.-Q.; Feng, Q.; Guo, J.-J.; Guo, M.-C.; Wang, J.-H.; Wang, Z.-H.; Wang, T.; Zhang, J.-J. InAs/GaAs quantum dot nar-row ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt. Express 2020, 28, 26555–26563. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Li, Q.; Liu, A.Y.; Gossard, A.C.; Bowers, J.E.; Hu, E.L.; Lau, K.M. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett. 2016, 41, 1664–1667. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Q.; Liu, A.Y.; Chow, W.W.; Gossard, A.C.; Bowers, J.E.; Hu, E.L.; Lau, K.M. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl. Phys. Lett. 2016, 108, 221101. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.; Li, Q.; Kennedy, M.J.; Liang, D.; Zhang, C.; Huang, D.; Zhang, Z.; Liu, A.Y.; Torres, A.; et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica 2017, 4, 940–944. [Google Scholar] [CrossRef]
- Jung, D.; Norman, J.; Kennedy, M.J.; Shang, C.; Shin, B.; Wan, Y.; Gossard, A.C.; Bowers, J.E. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett. 2017, 111, 122107. [Google Scholar] [CrossRef]
- Kwoen, J.; Jang, B.; Watanabe, K.; Arakawa, Y. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express 2019, 27, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhang, S.; Norman, J.C.; Kennedy, M.J.; He, W.; Liu, S.; Xiang, C.; Shang, C.; He, J.-J.; Gossard, A.C.; et al. Tunable quantum dot lasers grown directly on silicon. Optica 2019, 6, 1394–1400. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, S.; Norman, J.C.; Kennedy, M.; He, W.; Tong, Y.; Shang, C.; He, J.; Tsang, H.K.; Gossard, A.C.; et al. Directly modulated single-mode tunable quantum dot lasers at 1.3 µm. Laser Photonics Rev. 2020, 14, 1900348. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.C.; Tong, Y.; Kennedy, M.J.; He, W.; Selvidge, J.; Shang, C.; Dumont, M.; Malik, A.; Tsang, H.K.; et al. 1.3 µm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photonics Rev. 2020, 14, 2000037. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, C.; Norman, J.; Shi, B.; Li, Q.; Collins, N.; Dumont, M.; Lau, K.M.; Gossard, A.C.; Bowers, J.E. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–9. [Google Scholar] [CrossRef]
- Shang, C.; Selvidge, J.; Hughes, E.; Norman, J.C.; Taylor, A.A.; Gossard, A.C.; Mukherjee, K.; Bowers, J.E. A Pathway to Thin GaAs Virtual Substrate on On-Axis Si (001) with Ultralow Threading Dislocation Density. Phys. Status Solidi 2021, 218, 2000402. [Google Scholar] [CrossRef]
- Shang, C.; Hughes, E.; Wan, Y.; Dumont, M.; Koscica, R.; Selvidge, J.; Herrick, R.; Gossard, A.C.; Mukherjee, K.; Bowers, J.E. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 2021, 8, 749–754. [Google Scholar] [CrossRef]
- Shang, C.; Feng, K.; Hughes, E.T.; Clark, A.; Debnath, M.; Koscica, R.; Leake, G.; Herman, J.; Harame, D.; Ludewig, P.; et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci. Appl. 2022, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.-Q.; He, A.; Yang, B.; Wang, Z.-H.; Huang, J.-Z.; Han, D.; Ming, M.; Guo, X.; Su, Y.; Zhang, J.-J.; et al. Monolithic integration of embedded III-V lasers on SOI. Light Sci. Appl. 2023, 12, 84. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, Z.H.; Wei, W.Q.; Wang, T.; Zhang, J.J. Sole excited-state InAs quantum dot laser on silicon with strong feedback resistance. Front. Mater. 2021, 8, 648049. [Google Scholar] [CrossRef]
- Duan, J.; Huang, H.; Dong, B.; Norman, J.C.; Zhang, Z.; Bowers, J.E.; Grillot, F. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photonics Res. 2019, 7, 1222–1228. [Google Scholar] [CrossRef]
- Feng, M.; Liu, J.; Sun, Q.; Yang, H. III-nitride semiconductor lasers grown on Si. Prog. Quantum Electron. 2021, 77, 100323. [Google Scholar] [CrossRef]
- Arefin, R.; Ramachandra, S.H.; Jung, H.; You, W.; Hasan, S.M.N.; Turski, H.; Dwivedi, S.; Arafin, S. III-N/Si3N4 Integrated Photonics Platform for Blue Wavelengths. IEEE J. Quantum Electron. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Siddharth, A.; Wunderer, T.; Lihachev, G.; Voloshin, A.S.; Haller, C.; Wang, R.N.; Teepe, M.; Yang, Z.; Liu, J.; Riemensberger, J.; et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photonics 2022, 7, 046108. [Google Scholar] [CrossRef]
- Wunderer, T.; Siddharth, A.; Johnson, N.M.; Chua, C.L.; Teepe, M.; Yang, Z.; Batres, M.; Kippenberg, T.J. Low-noise hybrid photonic integrated violet and blue lasers for quantum applications. In Proceedings of the 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID), Miramar Beach, FL, USA, 12–14 September 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Wunderer, T.; Siddharth, A.; Johnson, N.M.; Chua, C.L.; Teepe, M.; Yang, Z.; Batres, M.; Maeda, P.; Lihachev, G.; Kippenberg, T.J. Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips. Opt. Lett. 2023, 48, 2781–2784. [Google Scholar] [CrossRef] [PubMed]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Xiang, J.; Liu, Z. Photodetectors based on sensitized two-dimensional transition metal dichalcogenides—A review. J. Mater. Res. 2017, 32, 4115–4131. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B.; Zhou, Y.; Wang, C.; Chen, X.; Zhang, H. Synthesis Techniques, Optoelectronic Properties, and Broadband Photodetection of Thin-Film Black Phosphorus. Adv. Opt. Mater. 2020, 8, 2000045. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Lan, C.; Shi, Z.; Cao, R.; Li, C.; Zhang, H. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices. Nanoscale 2020, 12, 11784–11807. [Google Scholar] [CrossRef] [PubMed]
- Ugeda, M.M.; Bradley, A.J.; Shi, S.-F.; Da Jornada, F.H.; Zhang, Y.; Qiu, D.Y.; Ruan, W.; Mo, S.-K.; Hussain, Z.; Shen, Z.-X.; et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095. [Google Scholar] [CrossRef]
- Ye, Y.; Wong, Z.J.; Lu, X.; Ni, X.; Zhu, H.; Chen, X.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics 2015, 9, 733–737. [Google Scholar] [CrossRef]
- Amani, M.; Lien, D.-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S.R.; Addou, R.; Kc, S.; Dubey, M.; et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068. [Google Scholar] [CrossRef]
- Lee, Y.; Ghimire, G.; Roy, S.; Kim, Y.; Seo, C.; Sood, A.K.; Jang, J.I.; Kim, J. Impeding exciton—Exciton annihilation in monolayer WS2 by laser irradiation. ACS Photonics 2018, 5, 2904–2911. [Google Scholar] [CrossRef]
- Danovich, M.; Zólyomi, V.; Aleiner, I.L.; Fal’ko, V.I. Auger recombination of dark excitons in WS2 and WSe2 monolayers. 2D Materials 2016, 3, 035011. [Google Scholar] [CrossRef]
- Wu, J.; Ma, H.; Yin, P.; Ge, Y.; Zhang, Y.; Li, L.; Zhang, H.; Lin, H. Two-dimensional materials for integrated photonics: Recent advances and future challenges. Small Sci. 2021, 1, 2000053. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Huang, D.; Sun, H.; Fan, F.; Feng, J.; Wang, Z.; Ning, C.-Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 2017, 12, 987–992. [Google Scholar] [CrossRef]
- Fang, H.; Liu, J.; Li, H.; Zhou, L.; Liu, L.; Li, J.; Wang, X.; Krauss, T.F.; Wang, Y. 1305 nm few-layer MoTe2-on-silicon laser-like emission. Laser Photonics Rev. 2018, 12, 1800015. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, H.; Rasmita, A.; Zhou, Y.; Li, J.; Yu, T.; Xiong, Q.; Zheludev, N.; Liu, J.; Gao, W. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 2019, 5, eaav4506. [Google Scholar] [CrossRef]
- Salehzadeh, O.; Djavid, M.; Tran, N.H.; Shih, I.; Mi, Z. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 2015, 15, 5302–5306. [Google Scholar] [CrossRef]
- Reed, J.C.; Zhu, A.Y.; Zhu, H.; Yi, F.; Cubukcu, E. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett. 2015, 15, 1967–1971. [Google Scholar] [CrossRef]
- Duong, N.M.H.; Xu, Z.-Q.; Kianinia, M.; Su, R.; Liu, Z.; Kim, S.; Bradac, C.; Tran, T.T.; Wan, Y.; Li, L.-J.; et al. Enhanced emission from WSe2 monolayers coupled to circular Bragg gratings. ACS Photonics 2018, 5, 3950–3955. [Google Scholar] [CrossRef]
- Liu, N.; Yang, X.; Zhang, J.; Zhu, Z.; Liu, K. Room-Temperature Excitonic Nanolaser Array with Directly Grown Monolayer WS2. ACS Photonics 2022, 10, 283–289. [Google Scholar] [CrossRef]
- Jung, H.; Ahn, N.; Klimov, V.I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15, 643–655. [Google Scholar] [CrossRef]
- Efros, A.L.; Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475–521. [Google Scholar] [CrossRef]
- Park, Y.-S.; Roh, J.; Diroll, B.T.; Schaller, R.D.; Klimov, V.I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6, 382–401. [Google Scholar] [CrossRef]
- Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939–941. [Google Scholar] [CrossRef]
- Klimov, V.I.; Mikhailovsky, A.A.; Xu, S.; Malko, A.; Hollingsworth, J.A.; Leatherdale, C.A.; Eisler, H.-J.; Bawendi, M.G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Voznyy, O.; Sabatini, R.P.; Bicanic, K.T.; Adachi, M.M.; McBride, J.R.; Reid, K.R.; Park, Y.-S.; Li, X.; Jain, A.; et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79. [Google Scholar] [CrossRef]
- Taghipour, N.; Whitworth, G.L.; Othonos, A.; Dalmases, M.; Pradhan, S.; Wang, Y.; Kumar, G.; Konstantatos, G. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser enabled by Suppression of Trap-Assisted Auger Recombination. Adv. Mater. 2022, 34, 2107532. [Google Scholar] [CrossRef]
- Adachi, M.M.; Fan, F.; Sellan, D.P.; Hoogland, S.; Voznyy, O.; Houtepen, A.J.; Parrish, K.D.; Kanjanaboos, P.; Malen, J.A.; Sargent, E.H. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 2015, 6, 8694. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, O.V.; Park, Y.-S.; Roh, J.; Fedin, I.; Nakotte, T.; Klimov, V.I. Sub-single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 2019, 365, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Park, Y.-S.; Lim, J.; Klimov, V.I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 2020, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, N.; Dalmases, M.; Whitworth, G.L.; Dosil, M.; Othonos, A.; Christodoulou, S.; Liga, S.M.; Konstantatos, G. Colloidal Quantum Dot Infrared Lasers Featuring Sub-Single-Exciton Threshold and Very High Gain. Adv. Mater. 2023, 35, 2207678. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Min, K.; Lee, M.; Kang, M.; Park, Y.; Cho, K.-S.; Roh, Y.-G.; Hwang, S.W.; Jeon, H. Colloidal Quantum Dot Lasers Built on a Passive Two-Dimensional Photonic Crystal Backbone. Nanoscale 2016, 8, 6571–6576. [Google Scholar] [CrossRef]
- Xie, W.; Stöferle, T.; Raino, G.; Aubert, T.; Bisschop, S.; Zhu, Y.; Mahrt, R.F.; Geiregat, P.; Brainis, E.; Hens, Z.; et al. On-Chip Integrated Quantum-Dot–Silicon-Nitride Microdisk Lasers. Adv. Mater. 2017, 29, 1604866. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.-S.; Klimov, V.I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater 2018, 17, 42–49. [Google Scholar] [CrossRef]
- Ahn, N.; Livache, C.; Pinchetti, V.; Jung, H.; Jin, H.; Hahm, D.; Park, Y.-S.; Klimov, V.I. Electrically Driven Amplified Spontaneous Emission from Colloidal Quantum Dots. Nature 2023, 617, 79–85. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shankar, A.G.; Wang, X. On-Chip Lasers for Silicon Photonics. Photonics 2024, 11, 212. https://doi.org/10.3390/photonics11030212
Zhang J, Shankar AG, Wang X. On-Chip Lasers for Silicon Photonics. Photonics. 2024; 11(3):212. https://doi.org/10.3390/photonics11030212
Chicago/Turabian StyleZhang, Jiangwen, Aadithya G. Shankar, and Xihua Wang. 2024. "On-Chip Lasers for Silicon Photonics" Photonics 11, no. 3: 212. https://doi.org/10.3390/photonics11030212
APA StyleZhang, J., Shankar, A. G., & Wang, X. (2024). On-Chip Lasers for Silicon Photonics. Photonics, 11(3), 212. https://doi.org/10.3390/photonics11030212