Multi-Layered Metamaterial Absorber: Electromagnetic and Thermal Characterization
Abstract
:1. Introduction
2. Multilayer Metamaterial Structures and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and Negative Refractive Index. Science 2014, 305, 788–792. [Google Scholar] [CrossRef]
- Tong, S.; Ren, C.; Tang, W. High-transmission negative refraction in the gradient space-coiling metamaterials. Appl. Phys. Lett. 2019, 114, 204101. [Google Scholar] [CrossRef]
- Singh, R.; Plum, E.; Menzel, C.; Rockstuhl, C.; Azad, A.K.; Cheville, R.A.; Lederer, F.; Zhang, W.; Zheludev, N.I. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 2009, 80, 153104. [Google Scholar] [CrossRef]
- Cheng, Y.; Fan, J.; Luo, H.; Chen, F.; Feng, N.; Mao, X.; Gong, R. Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region. Opt. Mater. Express 2019, 9, 1365–1376. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, S.; Yu, P.; Li, J.; Xie, B.; Li, Z.; Tian, J. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl. Phys. Lett. 2013, 103, 223102. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, R.; Fan, Y.; Fu, Q.; Wu, H.; Zhang, P.; Shen, N.-H.; Zhang, F. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. Nanoscale 2018, 10, 12054–12061. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Chi, D.T.; Khuyen, B.X.; Tung, B.S.; Lam, V.D.; Chen, L.Y.; Lee, Y. Progresses in metamaterials for advanced low-frequency perfect absorbers: A brief review. J. Electromagn. Waves Appl. 2020, 34, 2251–2265. [Google Scholar] [CrossRef]
- Hao, J.; Wang, J.; Liu, X.; Padilla, W.J.; Zhou, L.; Qiu, M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2010, 96, 251104. [Google Scholar] [CrossRef]
- Qu, S.; Hou, Y.; Sheng, P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proc. Natl. Acad. Sci. USA 2021, 118, e2110490118. [Google Scholar] [CrossRef]
- Long, L.V.; Tung, N.H.; Giang, T.T.; Son, P.T.; Tung, N.T.; Tung, B.S.; Khuyen, B.X.; Lam, V.D. Rotary bi-layer ring-shaped metamaterials for reconfiguration absorbers. Appl. Opt. 2022, 61, 9078–9084. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.C.; Pham, V.H.; Ho, T.H.; Nguyen, T.T.; Do, H.T.; Bui, X.K.; Bui, S.T.; Le, D.T.; Pham, T.L.; Vu, D.L. Broadband microwave coding metamaterial absorbers. Sci. Rep. 2020, 10, 1810. [Google Scholar] [CrossRef]
- Nguyen, T.K.T.; Cao, T.N.; Nguyen, N.H.; Bui, X.K.; Truong, C.L.; Vu, D.L.; Nguyen, T.Q.H. Simple design of a wideband and wide-angle insensitive metamaterial absorber using lumped resistors for X-and Ku-bands. IEEE Photonics J. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Pham, T.L.; Dinh, H.T.; Le, D.H.; Bui, X.K.; Bui, S.T.; Dang, H.L.; Phan, D.A.; Le, D.T.; Vu, D.L. Dual-band isotropic metamaterial absorber based on near-field interaction in the Ku band. Curr. Appl. Phys. 2020, 20, 331–336. [Google Scholar] [CrossRef]
- Phan, D.T.; Nguyen, T.K.T.; Nguyen, N.H.; Le, D.T.; Bui, X.K.; Vu, D.L.; Truong, C.L.; Nguyen, T.Q.H. Lightweight, ultra-wideband, and polarization-insensitive metamaterial absorber using a multilayer dielectric structure for C-and X-band applications. Phys. Status Solidi B 2021, 258, 2100175. [Google Scholar] [CrossRef]
- Alaee, R.; Farhat, M.; Rockstuhl, C.; Lederer, F. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 2012, 20, 28017–28024. [Google Scholar] [CrossRef]
- Nguyen, T.Q.M.; Nguyen, T.K.T.; Le, D.T.; Truong, C.L.; Vu, D.L.; Nguyen, T.Q.H. Numerical study of an ultra-broadband and wide-angle insensitive perfect metamaterial absorber in the UV–NIR region. Plasmonics 2021, 16, 1583–1592. [Google Scholar] [CrossRef]
- Le, D.T.; Tong, B.T.; Nguyen, T.K.T.; Cao, T.N.; Nguyen, H.Q.; Tran, M.C.; Truong, C.L.; Bui, X.K.; Vu, D.L.; Nguyen, T.Q.H. Polarization-insensitive dual-band terahertz metamaterial absorber based on asymmetric arrangement of two rectangular-shaped resonators. Optik 2021, 245, 167669. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Q.; Grant, J.; Saha, S.C.; Khalid, A.; Cumming, D.R. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 2011, 36, 945–947. [Google Scholar] [CrossRef]
- Appasani, B.; Prince, P.; Ranjan, R.K.; Gupta, N.; Verma, V.K. A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications. Plasmonics 2019, 14, 737–742. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.; Liang, C. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J. Appl. Phys. 2011, 110, 063702. [Google Scholar] [CrossRef]
- Lu, G.; Wu, F.; Zheng, M.; Chen, C.; Zhou, X.; Diao, C.; Liu, F.; Du, G.; Xue, C.; Jiang, H.; et al. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Opt. Express 2019, 27, 5326–5336. [Google Scholar] [CrossRef]
- Nguyen, T.Q.H.; Nguyen, T.K.T.; Nguyen, T.Q.M.; Cao, T.N.; Phan, H.L.; Luong, N.M.; Le, D.T.; Bui, X.K.; Truong, C.L.; Vu, D.L. Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Opt. Commun. 2021, 486, 126773. [Google Scholar] [CrossRef]
- Huynh, T.V.; Lam, V.D.; Khuyen, B.X.; Tung, B.S.; Tung, N.T. Controlling THz Absorption Properties of Metamaterials Based on Graphene. J. Electron. Mater. 2023, 52, 5719–5726. [Google Scholar] [CrossRef]
- Ha, D.T.; Dzung, D.N.; Ngoc, N.V.; Tung, B.S.; Pham, T.S.; Lee, Y.; Chen, L.; Khuyen, B.X.; Lam, V.D. Switching between perfect absorption and polarization conversion, based on hybrid metamaterial in the GHz and THz bands. J. Phys. D Appl. Phys. 2021, 54, 234003. [Google Scholar] [CrossRef]
- Othman, M.A.; Guclu, C.; Capolino, F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 2013, 21, 7614–7632. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, B.; Duan, J.; Xu, Y. Flexible ultrawideband microwave metamaterial absorber with multiple perfect absorption peaks based on the split square ring. Appl. Opt. 2018, 57, 10257–10263. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, W.Z.; Wu, Y.C.; Meng, D.; Dou, C.; Cheng, Y.Y.; Chen, Y.S.; Liu, J.; Gu, Y. A metamaterial absorber with a multi-layer metal–dielectric grating structure from visible to near-infrared. Opt. Commun. 2023, 542, 129588. [Google Scholar] [CrossRef]
- Quan, C.; Zou, J.; Guo, C.; Xu, W.; Zhu, Z.; Zhang, J. High-temperature resistant broadband infrared stealth metamaterial absorber. Opt. Laser Technol. 2022, 156, 108579. [Google Scholar] [CrossRef]
- Gandhi, C.; Babu, P.R.; Senthilnathan, K. Ultra-thin polarization independent broadband terahertz metamaterial absorber. Front. Optoelectron. 2021, 14, 288–297. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Song, Z. Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial. J. Appl. Phys. 2020, 128, 093104. [Google Scholar] [CrossRef]
- Odysseas, T.; Lei, Z.; Maria, K.; Costas, M.S.; Thomas, K. Experimental implementation of achromatic multiresonant metasurface for broadband pulse delay. ACS Photonics 2021, 8, 1649–1655. [Google Scholar]
- Chen, X.; Grzegorczyk, T.M.; Wu, B.I.; Pacheco, J., Jr.; Kong, J.A. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 2004, 70, 016608. [Google Scholar] [CrossRef]
- Zhou, J.; Economon, E.N.; Koschny, T.; Soukoulis, C.M. Unifying approach to left-handed material design. Opt. Lett. 2006, 31, 3620–3622. [Google Scholar] [CrossRef]
- Cengel, Y.; Ghajar, A. Heat and Mass Transfer: Fundamental and Applications, 5th ed.; McGraw Hill Education: New York, NY, USA, 2015; pp. 79–80. [Google Scholar]
- Ida, N. Engineering Electromagnetics, 3rd ed.; Springer Cham Publisher: Cham, Switzerland, 2015; pp. 625–626. [Google Scholar]
- Xiong, J.; Shen, J.; Gao, Y.; Chen, Y.; Ou, J.Y.; Liu, Q.H.; Zhu, J. Real-time on-demand design of circuit-analog plasmonic stack metamaterials by divide-and-conquer deep learning. Laser Photonics Rev. 2023, 17, 2100738. [Google Scholar] [CrossRef]
- Chen, R.; Li, Y.; Lou, M.; Fan, J.; Tang, Y.; Sensale-Rodriguez, B.; Yu, C.; Gao, W. Physics-aware machine learning and adversarial attack in complex-valued reconfigurable diffractive all-optical neural network. Laser Photonics Rev. 2022, 16, 2200348. [Google Scholar] [CrossRef]
- Ma, X.; Ma, Y.; Preston, C.; Liu, Q.; Kaushik, K.; Xu, D.; Wang, J.; Chen, Y.; Wong, Z.J.; Liu, M.; et al. Strategical deep learning for photonic bound states in the continuum. Laser Photonics Rev. 2022, 16, 2100658. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chiang, W.F.; Shih, Y.H.; Wei, W.Y.; Su, J.Y.; Huang, C.Y. Folding metamaterials with extremely strong electromagnetic resonance. Photonics Res. 2022, 10, 2215–2222. [Google Scholar] [CrossRef]
- Hu, Q.; Zhao, J.; Chen, K.; Qu, K.; Yang, W.; Zhao, J.; Jiang, T.; Feng, Y. An intelligent programmable omni-metasurface. Laser Photonics Rev. 2022, 16, 2100718. [Google Scholar] [CrossRef]
- Pan, Y.; Lan, F.; Zhang, Y.; Zeng, H.; Wang, L.; Song, T.; He, G.; Yang, Z. Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space. Photonics Res. 2022, 10, 416–425. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Z.; Li, S.; Dai, X.; Zhou, Y.; Liao, X.; Cao, J.C.; Liang, G.; Shang, Z.; Zhang, Z.; et al. Terahertz metalens of hyper-dispersion. Photonics Res. 2022, 10, 886–895. [Google Scholar] [CrossRef]
- Bao, L.; Cui, T.J. Tunable, reconfigurable, and programmable metamaterials. Microw. Opt. Technol. Lett. 2020, 62, 9–32. [Google Scholar] [CrossRef]
- Wang, B.X.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818. [Google Scholar] [CrossRef]
- Li, W.; Xu, M.; Xu, H.X.; Wang, X.; Huang, W. Metamaterial Absorbers: From tunable surface to structural transformation. Adv. Mater. 2022, 34, 2202509. [Google Scholar] [CrossRef]
- Gardes, F.Y.; Tsakmakidis, K.L.; Thomson, D.; Reed, G.T.; Mashanovich, G.Z.; Hess, O.; Avitabile, D. Micrometer size polarisation independent depletion-type photonic modulator in Silicon On Insulator. Opt. Express 2007, 15, 5879–5884. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuyen, B.X.; Viet, N.N.; Son, P.T.; Nguyen, B.H.; Anh, N.H.; Chi, D.T.; Hai, N.P.; Tung, B.S.; Lam, V.D.; Zheng, H.; et al. Multi-Layered Metamaterial Absorber: Electromagnetic and Thermal Characterization. Photonics 2024, 11, 219. https://doi.org/10.3390/photonics11030219
Khuyen BX, Viet NN, Son PT, Nguyen BH, Anh NH, Chi DT, Hai NP, Tung BS, Lam VD, Zheng H, et al. Multi-Layered Metamaterial Absorber: Electromagnetic and Thermal Characterization. Photonics. 2024; 11(3):219. https://doi.org/10.3390/photonics11030219
Chicago/Turabian StyleKhuyen, Bui Xuan, Ngo Nhu Viet, Pham Thanh Son, Bui Huu Nguyen, Nguyen Hai Anh, Do Thuy Chi, Nguyen Phon Hai, Bui Son Tung, Vu Dinh Lam, Haiyu Zheng, and et al. 2024. "Multi-Layered Metamaterial Absorber: Electromagnetic and Thermal Characterization" Photonics 11, no. 3: 219. https://doi.org/10.3390/photonics11030219
APA StyleKhuyen, B. X., Viet, N. N., Son, P. T., Nguyen, B. H., Anh, N. H., Chi, D. T., Hai, N. P., Tung, B. S., Lam, V. D., Zheng, H., Chen, L., & Lee, Y. (2024). Multi-Layered Metamaterial Absorber: Electromagnetic and Thermal Characterization. Photonics, 11(3), 219. https://doi.org/10.3390/photonics11030219