Record-High Efficiency Speckle Suppression in Multimode Fibers Using Cascaded Cylindrical Piezoelectric Ceramics
Abstract
:1. Introduction
2. Theory and Experimental Setup
2.1. Theory
2.2. Experimental Setup
3. Results and Discussion
3.1. Effect of the Number of Piezoelectric Ceramics on Speckle Suppression Efficiency
3.2. The Effect of the Number of Winding Rounds of Multimode Fibers on the Speckle Suppression Efficiency
3.3. Effect of Core Dimension of Multimode Fiber on Speckle Suppression Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, J.W. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Freund, I.; Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications. J. Stat. Phys. 2008, 130, 413–414. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar Dubey, A.; Gupta, M.; Singh, V.; Butola, A.; Singh Mehta, D. Speckle noise reduction strategies in laser-based projection imaging, fluorescence microscopy, and digital holography with uniform illumination, improved image sharpness, and resolution. Opt. Laser Technol. 2021, 141, 107079. [Google Scholar] [CrossRef]
- Park, J.; Kang, J.; Chang, J.H.; Yoo, Y. Speckle reduction techniques in medical ultrasound imaging. Biomed. Eng. Lett. 2014, 4, 32–40. [Google Scholar] [CrossRef]
- Thomas, W.; Middlebrook, C. Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors. J. Mod. Opt. 2014, 61, S74–S80. [Google Scholar] [CrossRef]
- Yu, N.E.; Choi, J.W.; Kang, H.; Ko, D.-K.; Fu, S.-H.; Liou, J.-W.; Kung, A.H.; Choi, H.; Kim, B.J.; Cha, M.; et al. Speckle noise reduction on a laser projection display via a broadband green light source. Opt. Express 2014, 22, 3547–3556. [Google Scholar] [CrossRef]
- Furman, D.; Mandelik, D. Speckle Reduction Using a Fiber Bundle and Light Guide. U.S. Patent US2008037933A1, 14 August 2008. [Google Scholar]
- Tong, Z.; Sun, C.; Ma, Y.; Wang, M.; Jia, S.; Chen, X. Laser Spatial Coherence Suppression with Refractive Optical Elements Toward the Improvement of Speckle Reduction by Light Pipes. IEEE Access 2019, 7, 172190–172198. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, D.; Wang, D.; Sun, M.; Gao, W.; Zhang, S.; Bi, Y. Influence and evaluation of vibrating screen methods on subjective speckle reduction. In Proceedings of the Fifth Symposium on Novel Optoelectronic Detection Technology and Application, Xi’an, China, 24–26 October 2018; Volume 11023, pp. 1082–1086. [Google Scholar]
- Jian, Z.; Tong, Z.; Ma, Y.; Wang, M.; Jia, S.; Chen, X. Laser Beam Modulation with a Fast Focus Tunable Lens for Speckle Reduction in Laser Projection Displays. Opt. Lasers Eng. 2019, 126, 105918. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar Dubey, A.; Gupta, M.; Singh Mehta, D. Speckle free efficient light engine for high power laser projectors and automobile headlamps. Opt. Laser Technol. 2022, 152, 108145. [Google Scholar] [CrossRef]
- Ouyang, G.; Akram, M.N.; Wang, K.; Tong, Z.; Chen, X. Laser speckle reduction based on angular diversity induced by Piezoelectric Benders. J. Eur. Opt. Soc. Rapid Public 2013, 8, 13025. [Google Scholar] [CrossRef]
- Parry, J.P.; Shephard, J.D.; Jones, J.D.C.; Hand, D.P. Speckle contrast reduction in a large-core fiber delivering Q-switched pulses for fluid flow measurements. Appl. Opt. 2006, 45, 4209–4218. [Google Scholar] [CrossRef]
- Ha, W.-S.; Lee, S.-J.; Oh, K.-H.; Jung, Y.-M.; Kim, J.-K. Speckle Reduction in Near-field Image of Multimode Fiber with a Piezoelectric Transducer. J. Opt. Soc. Korea 2008, 12, 126–130. [Google Scholar] [CrossRef]
- Ha, W.; Lee, K.; Jung, Y.; Kim, J.K.; Oh, K. Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction. Opt. Express 2009, 17, 17536–17546. [Google Scholar] [CrossRef] [PubMed]
- Fujimaki, Y.; Taniguchi, H. Reduction of speckle contrast in multimode fibers using piezoelectric vibrator. In Proceedings of the Photonics West—Lasers and Applications in Science and Engineering, San Francisco, CA, USA, 1–6 February 2014; Volume 8960. [Google Scholar]
- Ma, Q.; Xu, C.-Q.; Kitai, A.; Stadler, D. Speckle Reduction by Optimized Multimode Fiber Combined With Dielectric Elastomer Actuator and Lightpipe Homogenizer. J. Display Technol. 2016, 12, 1162–1167. [Google Scholar] [CrossRef]
- Tong, Z.; Shen, W.; Song, S.; Cheng, W.; Cai, Z.; Ma, Y.; Wei, L.; Ma, W.; Xiao, L.; Jia, S.; et al. Combination of micro-scanning mirrors and multi-mode fibers for speckle reduction in high lumen laser projector applications. Opt. Express 2017, 25, 3795–3804. [Google Scholar] [CrossRef]
- Gao, Q.; Tong, Z.; Ma, Y.; Wang, M.; Jia, S.; Chen, X. Flexible and lightweight speckle noise suppression module based on generation of dynamic speckles with multimode fiber and macro fiber composite. Opt. Laser Technol. 2020, 123, 105941. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Fan, Z.; Li, S.; Lu, W.; Zhang, H. Detection performance improvement method of single-photon LiDAR by the combination of speckle suppression with adaptive adjustment of aperture diameter and spatial correlation method. Opt. Lasers Eng. 2023, 160, 107282. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Jiang, P.; Wang, Q. Theoretical and experimental investigations on speckle suppression of dual-wavelength imaging LiDAR by vibrating the multimode fiber. Measurement 2022, 188, 110588. [Google Scholar] [CrossRef]
- Redding, B.; Popoff, S.M.; Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 2013, 21, 6584–6600. [Google Scholar] [CrossRef]
- Caravaca-Aguirre, A.M.; Piestun, R. Single multimode fiber endoscope. Opt. Express 2017, 25, 1656–1665. [Google Scholar] [CrossRef]
- Ito, Y.; Sakamoto, Y. Method for reducing speckle contrast in electro-holography illuminated by multimode optical fiber. Opt. Eng. 2023, 62, 083103. [Google Scholar]
- Li, W.; Mi, W.; Chen, L.-J. Advances, challenges and prospects of visible fiber lasers in display technologies. Displays 2024, 82, 102630. [Google Scholar] [CrossRef]
- Petoukhova, A.L.; Cleven, E.; de Mul, F.F.M.; Steenbergen, W. Suppression of dynamic laser speckle signals in multimode fibers of various lengths. Appl. Opt. 2004, 43, 2059–2065. [Google Scholar] [CrossRef]
- Qian, S.; Xu, Y.; Zhong, L.; Su, L. Investigation on sensitivity enhancement for optical fiber speckle sensors. Opt. Express 2016, 24, 10829–10840. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.S.; Naik, D.N.; Singh, R.K.; Takeda, M. Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity. Appl. Opt. 2012, 51, 1894–1904. [Google Scholar] [CrossRef]
- Zhu, J.G.; Sun, X.S.; Li, W. Electronic and Optoelectronic Materials; National Defense Industry Press: Beijing, China, 2007. [Google Scholar]
- Zhang, X.R. Analysis and Research on Characteristics of Ice Sensor Based on Piezoelectric Ceramics; HUST: Wuhan, China, 2022. [Google Scholar]
- Hlubina, P. Spectral and Dispersion Analysis of Laser Sources and Multimode Fibres Via the Statistics of the Intensity Pattern. J. Mod. Opt. 1994, 41, 1001–1014. [Google Scholar] [CrossRef]
- Tong, Z.; Gao, Q.; Yan, Y.; Ma, Y.; Wang, M.; Jia, S.; Chen, X. Electroactive despeckle diffuser using polymer dispersed liquid crystal in-plane switched by interdigitated electrodes. Opt. Laser Technol. 2022, 145, 107541. [Google Scholar] [CrossRef]
- Huang, Y. Theoretical analysis and experimental research on laser speckle suppression based on rotating diffuser. J. Qufu Norm. Univ. (Nat. Sci.) 2023, 49, 54–58. [Google Scholar]
- Sun, X.; Liu, H.-P.; Yu, J.; Han, O. Research on Speckle Suppression of Laser Projection Based on Motion Colloidal Solution. Opt. Optoelectron. Technol. 2023, 21, 112–116. [Google Scholar]
- Guo, Y.J.; Li, K.Q.; Zhang, S. Implementation of a semiconductor laser display system based on a scatter suppression method. Laser Infrared 2023, 53, 838–845. [Google Scholar]
- Cheng, J.; Zhou, S.; Sun, X.; Pu, X.; Sun, Q.; Xu, Y.; Liu, W. Laser Speckle Suppression Based on Tunable Metasurface. Acta Photonica Sin. 2020, 49, 724001. [Google Scholar] [CrossRef]
- Wang, X.L.; He, F.T.; Ji, Q.Y. Laser speckle control based on optical fiber vibration. Laser Technol. 2014, 38, 177–180. [Google Scholar] [CrossRef]
Parameter | ch1 | ch2 | ch3 |
---|---|---|---|
Resonant frequency (KHz) | 30.06 | 26.43 | 25.54 |
Outer diameter (mm) | 38 | 38 | 38 |
Thickness (mm) | 2.01 ± 0.1 | 2.66 ± 0.1 | 2.66 ± 0.1 |
Height (mm) | 20 | 13 | 13 |
Reference | Driving Voltage (V) | Speckle Suppression Efficiency | Method |
---|---|---|---|
[32] | 150 | 55% | Electroactive de-speckle diffuser |
[33] | -- | 72.727% | Rotate diffuser |
[34] | -- | 84.86% | Sports gum solution |
[35] | -- | 68% | Replacement diffuser |
[36] | 45–110 | 69.49% | Adjustable metasurface structure |
[28] | -- | 72.45% | Multimode fiber vibrated by a fan |
[37] | -- | 72.77% | Optical fiber vibrated by a voice coil motor |
[19] | 150 | 81.395% | Multimode fiber vibrated by a piezoelectric plate |
[15] | 20 | 47.83% | Multimode fiber vibrated by only one cylindrical piezoelectric ceramic |
[16] | 10 | 82.2% | Multimode fiber vibrated by a piezoelectric plate |
This work | 7 | 89.72% | Multimode fiber vibrated by cascaded cylindrical piezoelectric ceramics |
This work | 24 | 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Li, Z.; Li, F.; Lang, T.; Guan, X. Record-High Efficiency Speckle Suppression in Multimode Fibers Using Cascaded Cylindrical Piezoelectric Ceramics. Photonics 2024, 11, 234. https://doi.org/10.3390/photonics11030234
Yang N, Li Z, Li F, Lang T, Guan X. Record-High Efficiency Speckle Suppression in Multimode Fibers Using Cascaded Cylindrical Piezoelectric Ceramics. Photonics. 2024; 11(3):234. https://doi.org/10.3390/photonics11030234
Chicago/Turabian StyleYang, Ningning, Zhicheng Li, Fanghao Li, Tingting Lang, and Xiaowei Guan. 2024. "Record-High Efficiency Speckle Suppression in Multimode Fibers Using Cascaded Cylindrical Piezoelectric Ceramics" Photonics 11, no. 3: 234. https://doi.org/10.3390/photonics11030234
APA StyleYang, N., Li, Z., Li, F., Lang, T., & Guan, X. (2024). Record-High Efficiency Speckle Suppression in Multimode Fibers Using Cascaded Cylindrical Piezoelectric Ceramics. Photonics, 11(3), 234. https://doi.org/10.3390/photonics11030234