The Fresnel Approximation and Diffraction of Focused Waves
Abstract
:1. Introduction
2. Historical Background
“Focusing measurements show agreement with A. O. Williams’ prediction that the point of maximum acoustic intensity in the radiation pattern is not necessarily at the centre of curvature of the crystal,”
“The point of greatest intensity is not at the centre of curvature …,”
“Two surprising features become evident from examining these figures…. The first feature is that the dB contour has a minimum diameter or spot size of less than one-fourth the transducer diameter.”
“The large f-number optics will become more important as the laser becomes more popular.”
“However if , and , the Debye integral can be expected to give a good approximation to the light distribution in the region of focus.”
3. The Fresnel Approximation
3.1. The Two Traditional Forms for the Fresnel Approximation (FrA1 and FrA2)
3.2. The Generalized Fresnel Approximation (gFrA)
4. The Focused Case
4.1. Focal Length and Fresnel Number
4.2. Behaviour along the Optical Axis
4.3. Focal Shift
4.4. Off-Axis Behaviour
4.5. The Debye–Wolf (DW) Integral
4.6. The Scaled Debye–Wolf (sDW) Case
4.7. The Pseudo-Paraxial Approximation
4.8. The Kirchhoff Diffraction Integral Performed over the Plane of the Aperture (Kp)
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aKs | approximate Kirchhoff diffraction formula, integrated over a spherical wavefront |
asDW | Approximate scaled Debye–Wolf |
BDW | Boundary diffracted wave |
csDW | Corrected scaled Debye–Wolf |
DW | Debye–Wolf |
FrA1 | Fresnel approximation 1, dividing by z |
FrA2 | Fresnel approximation 2, dividing by r |
gFrA | Generalized Fresnel approximation |
HF | Huygens–Fresnel integral |
Kp | Kirchhoff diffraction formula, integrated over a planar surface |
Ks | Kirchhoff diffraction formula, integrated over a spherical wavefront |
RSI | First Rayleigh–Sommerfeld diffraction formula |
RSII | Second Rayleigh–Sommerfeld diffraction formula |
sDW | Scaled Debye–Wolf |
References
- Daly, C.J.; Rao, N.A.H.K. Scalar Diffraction from a Circular Aperture; Kluwer Academic: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Stamnes, J.J. Waves in Focal Regions; Adam Hilger: Bristol, UK, 1986. [Google Scholar]
- Osterberg, H.; Smith, L.W. Closed solutions of Rayleigh’s diffraction integral for axial points. J. Opt. Soc. Am. 1961, 51, 1050–1054. [Google Scholar] [CrossRef]
- Li, Y. Predictions of Rayleigh’s diffraction theory for the effect of focal shift in high-aperture systems. J. Opt. Soc. Am. A 2008, 25, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
- Aime, C. Fresnel diffraction of multiple disks on axis: Application to coronagraphy. Astron. Astrophys. 2020, 637, A16. [Google Scholar] [CrossRef]
- Basistiy, I.; Bazhenov, V.; Soskin, M.; Vasnetsov, M. Optics of light beams with screw dislocations. Opt. Commun. 1993, 103, 422–428. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Kovalyov, A.A.; Volotovsky, S.G. Near field propagation of vortex beams: Models and computation algorithms. Opt. Mem. Neural Netw. 2014, 23, 50–73. [Google Scholar] [CrossRef]
- Engelberg, J.; Levy, L. The advantages of metalenses over diffractive lenses. Nat. Commun. 2020, 11, 1991. [Google Scholar] [CrossRef]
- Gonçalves, M.R.; Rozenman, G.G.; Zimmerman, M.; Efremov, M.A.; Case, W.B.; Arie, A.; Shemer, L.; Schleich, W.P. Bright and dark diffractive focusing. Appl. Phys. B 2022, 128, 51. [Google Scholar] [CrossRef]
- Weisman, D.; Carmesin, C.M.; Rozenman, G.G.; Efremov, M.A.; Shemer, L.; Schleich, W.; Arie, A. Diffractive guiding of waves by a periodic array of slits. Phys. Rev. Lett. 2021, 127, 014303. [Google Scholar] [CrossRef]
- Young, T. The Bakerian Lecture. Experiments and calculations relative to physical optics. Philos. Trans. R. Soc. Lond. 1804, 94, 1–16. [Google Scholar]
- Airy, G.B. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 1835, 5, 283–291. [Google Scholar]
- Lommel, E. Die Beugungserscheinungen einer kreisrunden Oeffnung und eines kreisrunden Schirmschens theoretisch und experimentell Bearbeitet. Abh. Bayer. Akad. 1885, 15, 233–328. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 1st ed.; Pergamon: Oxford, UK, 1959. [Google Scholar]
- Nijboer, B. The diffraction theory of optical aberrations. Part I: General discussion of the geometrical aberrations. Physica 1943, 10, 679–692. [Google Scholar] [CrossRef]
- Boersma, J. On the computation of Lommel’s functions of two variables. Math. Comput. 1962, 16, 232–238. [Google Scholar]
- Rayleigh, J.W.S. On pin-hole photography. Philos. Mag. 1891, 31, 87–91. [Google Scholar] [CrossRef]
- Rayleigh, J.W.S. On the passage of waves through apertures in plane screens, and allied problems. Philos. Mag. 1897, 43, 259–272. [Google Scholar] [CrossRef]
- Sommerfeld, A. Optics; Lectures on theoretical physics; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Debye, P. Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie. Ann. Der Phys. 1909, 30, 755–776. [Google Scholar] [CrossRef]
- Williams, A.O., Jr. Acoustic intensity distribution from a ’piston’ source. II The concave piston. J. Acoust. Soc. Am. 1946, 17, 219–227. [Google Scholar] [CrossRef]
- Fein, L. Ultrasonic radiation from curved quartz crystals. J. Acoust. Soc. Am. 1949, 21, 511–516. [Google Scholar] [CrossRef]
- O’Neil, H.T. Theory of focused radiators. J. Acoust. Soc. Am. 1949, 21, 516–526. [Google Scholar] [CrossRef]
- Lucas, B.G.; Muir, T.G. The field of a focusing source. J. Acoust. Soc. Am. 1982, 72, 1289. [Google Scholar] [CrossRef]
- Andrews, C.L. Diffraction pattern of a circular aperture at short distances. Phys. Rev. 1947, 71, 777–786. [Google Scholar] [CrossRef]
- Bouwkamp, C.J. On the freely vibrating circular disk and the diffraction by circular disks and apertures. Physica 1950, 16, 1–16. [Google Scholar] [CrossRef]
- Bouwkamp, C.J. On the diffraction of electromagnetic waves by small circular disks and holes. Philips Res. Rep. 1950, 5, 401–422. [Google Scholar]
- Bouwkamp, C.J. Theoretical and numerical treatment of diffraction through a circular aperture. IEEE Trans. Antennas Propag. 1970, AP-18, 152–176. [Google Scholar] [CrossRef]
- Bouwkamp, C.J. Diffraction theory. Rep. Prog. Phys. 1954, 17, 35–100. [Google Scholar] [CrossRef]
- Linfoot, E.H.; Wolf, E. Diffraction images in systems with an annular aperture. Proc. Phys. Soc. B 1953, 66, 145–149. [Google Scholar] [CrossRef]
- Farnell, G.W. Calculated intensity and phase distribution in the image space of a microwave lens. Can. J. Phys. 1957, 35, 777–783. [Google Scholar] [CrossRef]
- Farnell, G.W. Measured phase distribution in the image space of a microwave lens. Can. J. Phys. 1958, 36, 935–943. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems. II Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 1959, 253, 358–379. [Google Scholar]
- McCutchen, C.W. Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 1964, 54, 240–244. [Google Scholar] [CrossRef]
- Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt. 1966, 5, 1550–1567. [Google Scholar] [CrossRef] [PubMed]
- Sherman, G.C. Application of the convolution theorem to Rayleigh’s integral formulas. J. Opt. Soc. Am. 1967, 57, 546–547. [Google Scholar] [CrossRef] [PubMed]
- Dainty, J.C. The image of a point for an aberration free lens with a circular pupil. Opt. Commun. 1969, 1, 176–178. [Google Scholar] [CrossRef]
- Zemanek, J. Beam behavior within the near-field of a vibrating piston. J. Acoust. Soc. Am. 1971, 49, 181–191. [Google Scholar] [CrossRef]
- Heurtley, J.C. Scalar Rayleigh-Sommerfeld and Kirchhoff diffraction integrals: A comparison of exact evaluations for axial points. J. Opt. Soc. Am. 1973, 73, 1003–1008. [Google Scholar] [CrossRef]
- Welford, W.T. Aplanatic hologram lenses on spherical surfaces. Opt. Commun. 1973, 9, 268–269. [Google Scholar] [CrossRef]
- Papoulis, A. Ambiguity function in Fourier optics. J. Opt. Soc. Am. 1974, 64, 779–788. [Google Scholar] [CrossRef]
- Carter, W. Band-limited angular spectrum approximating to a spherical wave field. J. Opt. Soc. Am. 1975, 65, 1054–1058. [Google Scholar] [CrossRef]
- Arimoto, A. Intensity distribution of aberration-free diffraction patterns due to circular apertures in large f-number optical systems. Opt. Acta 1976, 23, 245–250. [Google Scholar] [CrossRef]
- Harvey, J.E. Fourier treatment of near-field scalar diffraction theory. Am. J. Phys. 1979, 47, 974–980. [Google Scholar] [CrossRef]
- Southwell, W.H. Validity of the Fresnel approximation in the near field. J. Opt. Soc. Am. 1981, 71, 7–14. [Google Scholar] [CrossRef]
- Erkkila, J.H.; Rogers, M.E. Diffracted fields in the focal region of a convergent wave. J. Opt. Soc. Am. 1981, 71, 904–905. [Google Scholar] [CrossRef]
- Li, Y.; Wolf, E. Focal shifts in diffracted converging spherical waves. Opt. Commun. 1981, 39, 211–215. [Google Scholar] [CrossRef]
- Stamnes, J.J.; Spjelkavik, S. Focusing at small angular apertures in the Debye and Kirchhoff approximations. Opt. Commun. 1981, 40, 81–85. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Wilson, T. Effects of high angles of convergence on V(z) in the scanning acoustic microscope. Appl. Phys. Lett. 1981, 38, 858–859. [Google Scholar] [CrossRef]
- Li, Y.; Wolf, E. Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers. J. Opt. Soc. Am. A 1984, 1, 801–808. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 7th (expanded) ed.; Pergamon: Oxford, UK, 1999. [Google Scholar]
- Wilson, T.; Sheppard, C.J.R. Imaging with finite values of Fresnel number. J. Opt. Soc. Am. 1982, 72, 15–18. [Google Scholar] [CrossRef]
- Li, Y. Dependence of the focal shift on Fresnel number and f number. J. Opt. Soc. Am. 1982, 72, 770–774. [Google Scholar] [CrossRef]
- Li, Y.; Platzer, H. An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems. Opt. Acta 1983, 31, 1621–1643. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Imaging in optical systems of finite Fresnel number. J. Opt. Soc. Am. 1986, A3, 1428–1432. [Google Scholar] [CrossRef]
- Li, Y. Three-dimensional intensity distribution in low Fresnel number focusing systems. J. Opt. Soc. Am. A 1987, 4, 1349–1353. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Matthews, H.J. Imaging in high aperture optical systems. J. Opt. Soc. Am. A 1987, 4, 1354–1360. [Google Scholar] [CrossRef]
- English, R., Jr.; George, N. Diffraction from a circular aperture: On axis field strength. Appl. Opt. 1987, 26, 2760–2763. [Google Scholar] [CrossRef] [PubMed]
- Steane, A.M.; Rutt, H.N. Diffraction calcuations in the near field and the validity of the Fresnel approximation. J. Opt. Soc. Am. A 1989, 6, 1809–1814. [Google Scholar] [CrossRef]
- Bertilone, D.C. The contributions of homogeneous and evanescent plane waves to the scalar optical field: Exact diffraction formulae. J. Mod. Opt. 1991, 38, 865–875. [Google Scholar] [CrossRef]
- Bertilone, D.C. Wave theory for a converging spherical incident wave in an infinite-aperture system. J. Mod. Opt. 1991, 38, 1531–1536. [Google Scholar] [CrossRef]
- Kraus, H.G. Huygens-Fresnel-Kirchhoff wave-front diffraction formulation: Spherical waves. J. Opt. Soc. Am. A 1989, 6, 1196–1205. [Google Scholar] [CrossRef]
- Kraus, H.G. Huygens-Fresnel-Kirchhoffwave-front diffraction formulations for spherical waves and Gaussian laser beams: Discussion and errata. J. Opt. Soc. Am. A 1992, 9, 1132–1134. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Hrynevych, M. Diffraction by a circular aperture: A generalization of Fresnel diffraction theory. J. Opt. Soc. Am. A 1992, A9, 274–281. [Google Scholar] [CrossRef]
- Hrynevych, M. Diffraction Effects in Michelson Stellar Interferometry. Ph.D. Thesis, University of Sydney, Sydney, NSW, Australia, 1992. [Google Scholar]
- Andrés, P.; Martinez-Corral, M.; Ojeda-Castañeda, J. Off-axis focal shift for rotationally nonsymmetric screens. Opt. Lett. 1993, 18, 1290–1293. [Google Scholar] [CrossRef]
- Hsu, W.; Barakat, R. Stratton-Chu vectorial diffraction of electromagnetic fields by apertures with application to small-Fresnel-number systems. J. Opt. Soc. Am. 1994, A11, 623–629. [Google Scholar] [CrossRef]
- Wang, W.; Friberg, A.T.; Wolf, E. Structure of focused fields in systems with large Fresnel numbers. J. Opt. Soc. Am. A 1995, 12, 1947–1953. [Google Scholar] [CrossRef]
- Wang, W.; Wolf, E. Far-zone behavior of focused fields in systems with different Fresnel numbers. Opt. Commun. 1995, 119, 453–459. [Google Scholar] [CrossRef]
- Forbes, G.W. Validity of the Fresnel approximation in the diffraction of collimated beams. J. Opt. Soc. Am. A 1996, 13, 1816–1826. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Török, P. Dependence of focal shift on Fresnel number and angular aperture. Opt. Lett. 1998, 23, 1803–1804. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Török, P. Effects of Fresnel number in focusing and imaging. Proc. SPIE 1999, 3729, 458–472. [Google Scholar]
- Sheppard, C.J.R. Validity of the Debye approximation. Opt. Lett. 2000, 25, 1660–1662. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Török, P. Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number. J. Opt. Soc. Am. A 2003, 20, 2156–2162. [Google Scholar] [CrossRef]
- Teng, S.; Liu, L.; Liu, D. Analytic expression of the diffraction of a circular aperture. Optik 2005, 116, 568–572. [Google Scholar] [CrossRef]
- Lin, J.; Yuan, X.C.; Kou, S.S.; Sheppard, C.J.R.; Rodríguez-Herrera, O.G.; Dainty, J.C. Direct calculation of a three-dimensional diffraction field. Opt. Lett. 2011, 36, 1341–1343. [Google Scholar] [CrossRef]
- Kou, S.S.; Sheppard, C.J.R.; Lin, J. Evaluation of the Rayleigh-Sommerfeld diffraction formula with 3D convolution: The 3D angular spectrum (3D-AS) method. Opt. Lett. 2013, 38, 5296–5299. [Google Scholar] [CrossRef] [PubMed]
- Glückstad, J.; Madsen, A.E.G. New analytical diffraction expressions for the Fresnel–Fraunhofer transition regime. Optik 2023, 285, 170950. [Google Scholar] [CrossRef]
- Li, Y. Three-dimensional intensity distribution in the far zone of focused fields in systems with different Fresnel numbers. J. Opt. Soc. Am. A 2023, 40, 2197–2204. [Google Scholar] [CrossRef]
- Murty, M.V.R.K. On the theoretical limit of resolution. J. Opt. Soc. Am. 1957, 47, 667–668. [Google Scholar] [CrossRef]
- Zverev, V.A. Illumination distribution in the diffraction image of an off-axis point. Sov. J. Opt. Technol. 1986, 53, 451–454. [Google Scholar]
- Gibson, S.F.; Lanni, F. Diffraction by a circular aperture as a model for three-dimensional optical microscopy. J. Opt. Soc. Am. A 1989, 6, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Roberts, P.P.; Gu, M. Fresnel approximation for off-axis illumination of a circular aperture. J. Opt. Soc. Am. 1993, A10, 984–986. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Hegedus, Z. Resolution for off-axis illumination. J. Opt. Soc. Am. A 1998, 15, 622–624. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Cooper, I.J. Fresnel diffraction by a circular aperture with off-axis illumination and its use in deconvolution of microscope images. J. Opt. Soc. Am. A 2004, 21, 540–545. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Kou, S.S.; Lin, J. The Hankel transform in n-dimensions and its applications in optical propagation and imaging. In Advances in Imaging and Electron Physics; Hawkes, P.W., Ed.; Academic Press: Burlington, NJ, USA, 2015; Volume 188, pp. 135–184. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheppard, C.J.R. The Fresnel Approximation and Diffraction of Focused Waves. Photonics 2024, 11, 346. https://doi.org/10.3390/photonics11040346
Sheppard CJR. The Fresnel Approximation and Diffraction of Focused Waves. Photonics. 2024; 11(4):346. https://doi.org/10.3390/photonics11040346
Chicago/Turabian StyleSheppard, Colin J. R. 2024. "The Fresnel Approximation and Diffraction of Focused Waves" Photonics 11, no. 4: 346. https://doi.org/10.3390/photonics11040346
APA StyleSheppard, C. J. R. (2024). The Fresnel Approximation and Diffraction of Focused Waves. Photonics, 11(4), 346. https://doi.org/10.3390/photonics11040346