Similariton-like Pulse Evolution in an Er-Doped Fiber Laser with Hybrid Mode Locking
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
4. Numerical Modeling and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Draper, A.D.; Cole, R.K.; Makowiecki, A.S.; Mohr, J.; Zdanowicz, A.; Marchese, A.; Hoghooghi, N.; Rieker, G.B. Broadband Dual-Frequency Comb Spectroscopy in a Rapid Compression Machine. Opt. Express 2019, 27, 10814. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Tancin, R.J.; Radhakrishna, V.; Lucht, R.P.; Goldenstein, C.S. Broadband Ultrafast-Laser-Absorption Spectroscopy for Multi-Hydrocarbon Measurements near 3.3 Μm in Flames. Appl. Opt. 2023, 62, 4681. [Google Scholar] [CrossRef] [PubMed]
- Ohtsubo, N.; Li, Y.; Nemitz, N.; Hachisu, H.; Matsubara, K.; Ido, T.; Hayasaka, K. Frequency Ratio of an 115 In + Ion Clock and a 87 Sr Optical Lattice Clock. Opt. Lett. 2020, 45, 5950. [Google Scholar] [CrossRef] [PubMed]
- Beloy, K.; Bodine, M.I.; Bothwell, T.; Brewer, S.M.; Bromley, S.L.; Chen, J.S.; Deschênes, J.D.; Diddams, S.A.; Fasano, R.J.; Fortier, T.M.; et al. Frequency Ratio Measurements at 18-Digit Accuracy Using an Optical Clock Network. Nature 2021, 591, 564–569. [Google Scholar] [CrossRef]
- Wang, F.; Xu, E.M.; Dong, J.J.; Zhang, X.L. A Tunable and Switchable Single-Longitudinal-Mode Dual-Wavelength Fiber Laser Incorporating a Reconfigurable Dual-Pass Mach-Zehnder Interferometer and Its Application in Microwave Generation. Opt. Commun. 2011, 284, 2337–2340. [Google Scholar] [CrossRef]
- Jung, K.; Shin, J.; Kim, J. Ultralow Phase Noise Microwave Generation From Mode-Locked Er-Fiber Lasers With Subfemtosecond Integrated Timing Jitter. IEEE Photonics J. 2013, 5, 5500906. [Google Scholar] [CrossRef]
- Kalubovilage, M.; Endo, M.; Schibli, T.R. Ultra-Low Phase Noise Microwave Generation with a Free-Running Monolithic Femtosecond Laser. Opt. Express 2020, 28, 25400. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, X.; Gu, X.; Chen, H.; Zhang, N.; Meng, Y.; Lu, X.; He, L.; Xu, Y.; Wang, F. Sub-Femtosecond Timing Jitter From a SESAM Mode-Locked Yb-Fiber Laser. IEEE Photonics Technol. Lett. 2021, 33, 1309–1312. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, Z.; Pan, R.; Zhang, T.; Feng, Y.; Hu, X.; Wang, Y.; Wu, S. Compact, Repetition Rate Locked All-PM Fiber Femtosecond Laser System Based on Low Noise Figure-9 Er:Fiber Laser. Opt. Laser Technol. 2023, 158, 108818. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Y.; Zhang, W.; Luo, D.; Wang, C.; Zhou, L.; Deng, Z.; Li, W. Low-Noise, Robust, All-Polarization-Maintaining Mode-Locked Er-Doped Fiber Ring Laser. IEEE Photonics Technol. Lett. 2018, 30, 1139–1142. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, Y.; Zhu, Z.; Luo, D.; Gu, C.; Zhou, L.; Xie, G.; Li, W. Ultra-Precise Optical Phase-Locking Approach for Ultralow Noise Frequency Comb Generation. Opt. Laser Technol. 2021, 138, 106906. [Google Scholar] [CrossRef]
- Benko, C.; Ruehl, A.; Martin, M.J.; Eikema, K.S.E.; Fermann, M.E.; Hartl, I.; Ye, J. Full Phase Stabilization of a Yb:Fiber Femtosecond Frequency Comb via High-Bandwidth Transducers. Opt. Lett. 2012, 37, 2196. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Zhang, S.; Kwon, D.; Liao, R.; Cui, Y.; Zhang, Z.; Song, Y.; Kim, J. Intensity Noise Suppression in Mode-Locked Fiber Lasers by Double Optical Bandpass Filtering. Opt. Lett. 2017, 42, 4095. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.S.; Grosinger, W.; Fellinger, J.; Winkler, G.; Perner, L.W.; Droste, S.; Salman, S.H.; Li, C.; Heyl, C.M.; Hartl, I.; et al. Flexible All-PM NALM Yb:Fiber Laser Design for Frequency Comb Applications: Operation Regimes and Their Noise Properties. Opt. Express 2020, 28, 18946. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Ippen, E.P.; Haus, H.A. Pulse Dynamics in Stretched-Pulse Fiber Lasers. Appl. Phys. Lett. 1995, 67, 158–160. [Google Scholar] [CrossRef]
- Ilday, F.Ö.; Buckley, J.R.; Clark, W.G.; Wise, F.W. Self-Similar Evolution of Parabolic Pulses in a Laser. Phys. Rev. Lett. 2004, 92, 213902. [Google Scholar] [CrossRef] [PubMed]
- Peacock, A.C.; Kruhlak, R.J.; Harvey, J.D.; Dudley, J.M. Solitary Pulse Propagation in High Gain Optical Fiber Amplifiers with Normal Group Velocity Dispersion. Opt. Commun. 2002, 206, 171–177. [Google Scholar] [CrossRef]
- Wise, F.W.; Chong, A.; Renninger, W.H. High-energy Femtosecond Fiber Lasers Based on Pulse Propagation at Normal Dispersion. Laser Photon Rev. 2008, 2, 58–73. [Google Scholar] [CrossRef]
- Chen, W.; Song, Y.; Jung, K.; Hu, M.; Wang, C.; Kim, J. Few-Femtosecond Timing Jitter from a Picosecond All-Polarization-Maintaining Yb-Fiber Laser. Opt. Express 2016, 24, 1347. [Google Scholar] [CrossRef]
- Ouyang, C.; Shum, P.; Wang, H.; Haur Wong, J.; Wu, K.; Fu, S.; Li, R.; Kelleher, E.J.R.; Chernov, A.I.; Obraztsova, E.D. Observation of Timing Jitter Reduction Induced by Spectral Filtering in a Fiber Laser Mode Locked with a Carbon Nanotube-Based Saturable Absorber. Opt. Lett. 2010, 35, 2320. [Google Scholar] [CrossRef]
- Yu, Z.; Ou, S.; Guo, L.; Zhang, Q.; Sui, Q.; Chen, Y.; Zhang, N.; Liu, H.; Shum, P.P. 109 Fs, 553 MHz Pulses from a Polarization-Maintaining Yb-Doped Ring Fiber Laser with SESAM Mode-Locking. Opt. Commun. 2022, 522, 128520. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Liu, X. Dynamics of Carbon Nanotube-Based Mode-Locking Fiber Lasers. Nanophotonics 2020, 9, 2731–2761. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lin, G.-R. Carbon Nanomaterials Based Saturable Absorbers for Ultrafast Passive Mode-Locking of Fiber Lasers. Curr. Nanosci. 2020, 16, 441–457. [Google Scholar] [CrossRef]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Orekhov, I.O.; Kudelin, I.S.; Pnev, A.B.; Karasik, V.E.; Krylov, A.A.; Denisov, L.K. High-Energy Ultrashort-Pulse All-Fiber Erbium-Doped Ring Laser with Improved Free-Running Performance. J. Opt. Soc. Am. B 2018, 35, 2010. [Google Scholar] [CrossRef]
- Yu, Y.; Teng, H.; Wang, H.; Wang, L.; Zhu, J.; Fang, S.; Chang, G.; Wang, J.; Wei, Z. Highly-Stable Mode-Locked PM Yb-Fiber Laser with 10 NJ in 93-Fs at 6 MHz Using NALM. Opt. Express 2018, 26, 10428. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, M.; Chen, Y.; Ouyang, D.; Zhao, J.; Pei, J.; Ruan, S. Stable Noise-like Pulse Generation in All-PM Mode-Locked Tm-Doped Fiber Laser Based on NOLM. Chin. Opt. Lett. 2021, 19, 091402. [Google Scholar] [CrossRef]
- Chernysheva, M.A.; Krylov, A.A.; Mou, C.; Arif, R.N.; Rozhin, A.G.; Rummelli, M.H.; Turitsyn, S.K.; Dianov, E.M. Higher-Order Soliton Generation in Hybrid Mode-Locked Thulium-Doped Fiber Ring Laser. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 425–432. [Google Scholar] [CrossRef]
- Chernykh, D.S.; Krylov, A.A.; Levchenko, A.E.; Grebenyukov, V.V.; Arutunyan, N.R.; Pozharov, A.S.; Obraztsova, E.D.; Dianov, E.M. Hybrid Mode-Locked Erbium-Doped All-Fiber Soliton Laser with a Distributed Polarizer. Appl. Opt. 2014, 53, 6654. [Google Scholar] [CrossRef] [PubMed]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Orekhov, I.O.; Kudelin, I.S.; Denisov, L.K.; Karasik, V.E.; Agafonov, V.N.; Khabashesku, V.N.; Davydov, V.A. Femtosecond Er-Doped All-Fiber Laser with High-Density Well-Aligned Carbon-Nanotube-Based Thin-Film Saturable Absorber. Nanomaterials 2022, 12, 3864. [Google Scholar] [CrossRef]
- Du, Y.; Shu, X. Transformation From Conventional Dissipative Solitons to Amplifier Similaritons in All-Normal Dispersion Mode-Locked Fiber Lasers. IEEE Photonics J. 2018, 10, 1500911. [Google Scholar] [CrossRef]
- Lapre, C.; Billet, C.; Meng, F.; Ryczkowski, P.; Sylvestre, T.; Finot, C.; Genty, G.; Dudley, J.M. Real-Time Characterization of Spectral Instabilities in a Mode-Locked Fibre Laser Exhibiting Soliton-Similariton Dynamics. Sci. Rep. 2019, 9, 13950. [Google Scholar] [CrossRef] [PubMed]
- Boscolo, S.; Turitsyn, S.K.; Finot, C. Amplifier Similariton Fiber Laser with Nonlinear Spectral Compression. Opt. Lett. 2012, 37, 4531. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.; Renninger, W.H.; Wise, F.W. Properties of Normal-Dispersion Femtosecond Fiber Lasers. J. Opt. Soc. Am. B 2008, 25, 140. [Google Scholar] [CrossRef]
- Luo, Y.; Xiang, Y.; Xia, R.; Ni, W.; Liu, B.; Shum, P.P.; Tang, X.; Liu, D.; Sun, Q. Breathing Dynamics in a Gain-Guided Dissipative Soliton-Similariton Fiber Laser. IEEE Photonics Technol. Lett. 2020, 32, 481–484. [Google Scholar] [CrossRef]
- Zhao, L.M.; Lu, C.; Tam, H.Y.; Wai, P.K.A.; Tang, D.Y. High Fundamental Repetition Rate Fiber Lasers Operated in Strong Normal Dispersion Regime. IEEE Photonics Technol. Lett. 2009, 21, 724–726. [Google Scholar] [CrossRef]
- Krylov, A.A.; Sazonkin, S.G.; Arutyunyan, N.R.; Grebenyukov, V.V.; Pozharov, A.S.; Dvoretskiy, D.A.; Obraztsova, E.D.; Dianov, E.M. Performance Peculiarities of Carbon-Nanotube-Based Thin-Film Saturable Absorbers for Erbium Fiber Laser Mode-Locking. J. Opt. Soc. Am. B 2016, 33, 134. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, L.; Fang, X.; Gao, C.; Qian, K. Generation of Sub-60 Fs Similaritons at 1.6 Μm From an All-Fiber Er-Doped Laser. J. Light. Technol. 2016, 34, 4128–4134. [Google Scholar] [CrossRef]
- Agrawal, G.P. Pulse Propagation in Fibers. In Nonlinear Fiber Optics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 27–55. [Google Scholar]
- Sazonkin, S.G.; Orekhov, I.O.; Dvoretskiy, D.A.; Lazdovskaia, U.S.; Ismaeel, A.; Denisov, L.K.; Karasik, V.E. Analysis of the Passive Stabilization Methods of Optical Frequency Comb in Ultrashort-Pulse Erbium-Doped Fiber Lasers. Fibers 2022, 10, 88. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Lamb, E.S.; Wise, F. Self-Similar Erbium-Doped Fiber Laser with Large Normal Dispersion. Opt. Lett. 2014, 39, 1019. [Google Scholar] [CrossRef]
- Oktem, B.; Ülgüdür, C.; Ilday, F.Ö. Soliton–Similariton Fibre Laser. Nat. Photonics 2010, 4, 307–311. [Google Scholar] [CrossRef]
Parameter, Unit | SMF-28 | CS980 | EDF |
---|---|---|---|
β2, ps2/m | −0.022 | 0.0028 | 0.0696 |
γ, 1/W⋅m | 0.001 | 0.00346 | 0.00346 |
α, dB/m | 0.00017 | 0.0002 | 0.00025 |
Gain (g), 1/m | 0 | 0 | 20 |
Length, m | 18.21 | 2.044 | 6.09 |
Element | Parameter | Value |
---|---|---|
C:BNNTs | Modulation depth | 0.3 |
Saturation power, W | 3 | |
Recovery time, ps | 0.25 | |
Coupler | Coupling ratio | 20/80 |
Internal loss | 0.005 | |
WDM | Filter bandwidth, nm | 30 |
NPE | Saturation power, W | 1000 |
Modulation depth | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorenko, A.Y.; Ismaeel, A.; Orekhov, I.O.; Dvoretskiy, D.A.; Sazonkin, S.G.; Denisov, L.K.; Karasik, V.E. Similariton-like Pulse Evolution in an Er-Doped Fiber Laser with Hybrid Mode Locking. Photonics 2024, 11, 387. https://doi.org/10.3390/photonics11040387
Fedorenko AY, Ismaeel A, Orekhov IO, Dvoretskiy DA, Sazonkin SG, Denisov LK, Karasik VE. Similariton-like Pulse Evolution in an Er-Doped Fiber Laser with Hybrid Mode Locking. Photonics. 2024; 11(4):387. https://doi.org/10.3390/photonics11040387
Chicago/Turabian StyleFedorenko, Aleksander Y., Almikdad Ismaeel, Ilya O. Orekhov, Dmitriy A. Dvoretskiy, Stanislav G. Sazonkin, Lev K. Denisov, and Valeriy E. Karasik. 2024. "Similariton-like Pulse Evolution in an Er-Doped Fiber Laser with Hybrid Mode Locking" Photonics 11, no. 4: 387. https://doi.org/10.3390/photonics11040387
APA StyleFedorenko, A. Y., Ismaeel, A., Orekhov, I. O., Dvoretskiy, D. A., Sazonkin, S. G., Denisov, L. K., & Karasik, V. E. (2024). Similariton-like Pulse Evolution in an Er-Doped Fiber Laser with Hybrid Mode Locking. Photonics, 11(4), 387. https://doi.org/10.3390/photonics11040387