Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber
Abstract
:1. Introduction
2. Apparatus
3. Results and Discussion
3.1. Optimizing the Coupling of the Trapping Laser Beam
3.2. Loading of Atoms into the HC-ARF
3.3. Preparation of Zeeman-Insensitive State
3.4. Atom Interferometer
3.4.1. Raman Laser Pulses
3.4.2. Doppler-Insensitive Interferometry
3.4.3. Doppler-Sensitive Interferometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russell, P. Photonic Crystal Fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Poletti, F. Nested Antiresonant Nodeless Hollow Core Fiber. Opt. Express 2014, 22, 23807. [Google Scholar] [CrossRef] [PubMed]
- Debord, B.; Amsanpally, A.; Chafer, M.; Baz, A.; Maurel, M.; Blondy, J.M.; Hugonnot, E.; Scol, F.; Vincetti, L.; Gérôme, F.; et al. Ultralow Transmission Loss in Inhibited-Coupling Guiding Hollow Fibers. Optica 2017, 4, 209. [Google Scholar] [CrossRef]
- Sakr, H.; Chen, Y.; Jasion, G.T.; Bradley, T.D.; Hayes, J.R.; Mulvad, H.C.H.; Davidson, I.A.; Numkam Fokoua, E.; Poletti, F. Hollow Core Optical Fibres with Comparable Attenuation to Silica Fibres between 600 and 1100 nm. Nat. Commun. 2020, 11, 6030. [Google Scholar] [CrossRef] [PubMed]
- Okaba, S.; Takano, T.; Benabid, F.; Bradley, T.; Vincetti, L.; Maizelis, Z.; Yampol’skii, V.; Nori, F.; Katori, H. Lamb-Dicke Spectroscopy of Atoms in a Hollow-Core Photonic Crystal Fibre. Nat. Commun. 2014, 5, 4096. [Google Scholar] [CrossRef]
- Epple, G.; Kleinbach, K.S.; Euser, T.G.; Joly, N.Y.; Pfau, T.; Russell, P.S.J.; Löw, R. Rydberg Atoms in Hollow-Core Photonic Crystal Fibres. Nat. Commun. 2014, 5, 4132. [Google Scholar] [CrossRef]
- Langbecker, M.; Noaman, M.; Kjærgaard, N.; Benabid, F.; Windpassinger, P. Rydberg Excitation of Cold Atoms inside a Hollow-Core Fiber. Phys. Rev. A 2017, 96, 041402. [Google Scholar] [CrossRef]
- Sprague, M.R.; Michelberger, P.S.; Champion, T.F.M.; England, D.G.; Nunn, J.; Jin, X.M.; Kolthammer, W.S.; Abdolvand, A.; Russell, P.S.J.; Walmsley, I.A. Broadband Single-Photon-Level Memory in a Hollow-Core Photonic Crystal Fibre. Nat. Photonics 2014, 8, 287–291. [Google Scholar] [CrossRef]
- Li, W.; Islam, P.; Windpassinger, P. Controlled Transport of Stored Light. Phys. Rev. Lett. 2020, 125, 150501. [Google Scholar] [CrossRef]
- Venkataraman, V.; Saha, K.; Gaeta, A.L. Phase Modulation at the Few-Photon Level for Weak-Nonlinearity-Based Quantum Computing. Nat. Photonics 2013, 7, 138–141. [Google Scholar] [CrossRef]
- Hu, Z.K.; Sun, B.L.; Duan, X.C.; Zhou, M.K.; Chen, L.L.; Zhan, S.; Zhang, Q.Z.; Luo, J. Demonstration of an Ultrahigh-Sensitivity Atom-Interferometry Absolute Gravimeter. Phys. Rev. A 2013, 88, 043610. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, Q.; Wang, Z.; Wu, B.; Cheng, B.; Lin, Q. Participation in the Absolute Gravity Comparison with a Compact Cold Atom Gravimeter. Chin. Opt. Lett. 2019, 17, 011204. [Google Scholar] [CrossRef]
- Yoon, T.; Bajcsy, M. Laser-Cooled Cesium Atoms Confined with a Magic-Wavelength Dipole Trap inside a Hollow-Core Photonic-Bandgap Fiber. Phys. Rev. A 2019, 99, 023415. [Google Scholar] [CrossRef]
- Schrader, D.; Kuhr, S.; Alt, W.; Müller, M.; Gomer, V.; Meschede, D. An Optical Conveyor Belt for Single Neutral Atoms. Appl. Phys. B 2001, 73, 819–824. [Google Scholar] [CrossRef]
- Xin, M.; Leong, W.S.; Chen, Z.; Lan, S.Y. An Atom Interferometer inside a Hollow-Core Photonic Crystal Fiber. Sci. Adv. 2018, 4, e1701723. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, W.; Xu, X.; Han, R.; Gao, C.; Dai, C.; Song, N. Suppressing the Dephasing of Optically Trapped Atoms inside a Hollow-Core Fiber. Opt. Lett. 2024, 49, 206. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Fredslund Andersen, M.; Davidson, N. Suppression of Inhomogeneous Broadening in Rf Spectroscopy of Optically Trapped Atoms. Phys. Rev. A 2002, 66, 045401. [Google Scholar] [CrossRef]
- Carr, A.W.; Saffman, M. Doubly Magic Optical Trapping for Cs Atom Hyperfine Clock Transitions. Phys. Rev. Lett. 2016, 117, 150801. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; Leong, W.S.; Chen, Z.; Lan, S.Y. Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber. Phys. Rev. Lett. 2019, 122, 163901. [Google Scholar] [CrossRef]
- Wang, Y.; Chai, S.; Billotte, T.; Chen, Z.; Xin, M.; Leong, W.S.; Amrani, F.; Debord, B.; Benabid, F.; Lan, S.Y. Enhancing Fiber Atom Interferometer by In-Fiber Laser Cooling. Phys. Rev. Res. 2022, 4, L022058. [Google Scholar] [CrossRef]
- Kuhr, S.; Alt, W.; Schrader, D.; Dotsenko, I.; Miroshnychenko, Y.; Rauschenbeutel, A.; Meschede, D. Analysis of Dephasing Mechanisms in a Standing-Wave Dipole Trap. Phys. Rev. A 2005, 72, 023406. [Google Scholar] [CrossRef]
- Bajcsy, M.; Hofferberth, S.; Peyronel, T.; Balic, V.; Liang, Q.; Zibrov, A.S.; Vuletic, V.; Lukin, M.D. Laser-Cooled Atoms inside a Hollow-Core Photonic-Crystal Fiber. Phys. Rev. A 2011, 83, 063830. [Google Scholar] [CrossRef]
- Vorrath, S.; Möller, S.A.; Windpassinger, P.; Bongs, K.; Sengstock, K. Efficient Guiding of Cold Atoms through a Photonic Band Gap Fiber. New J. Phys. 2010, 12, 123015. [Google Scholar] [CrossRef]
- Hilton, A.; Perrella, C.; Benabid, F.; Sparkes, B.; Luiten, A.; Light, P. High-Efficiency Cold-Atom Transport into a Waveguide Trap. Phys. Rev. Appl. 2018, 10, 044034. [Google Scholar] [CrossRef]
- Langbecker, M.; Wirtz, R.; Knoch, F.; Noaman, M.; Speck, T.; Windpassinger, P. Highly Controlled Optical Transport of Cold Atoms into a Hollow-Core Fiber. New J. Phys. 2018, 20, 083038. [Google Scholar] [CrossRef]
- Wang, Y.; Chai, S.; Xin, M.; Leong, W.S.; Chen, Z.; Lan, S.Y. Loading Dynamics of Cold Atoms into a Hollow-Core Photonic Crystal Fiber. Fibers 2020, 8, 28. [Google Scholar] [CrossRef]
- Uebel, P.; Günendi, M.C.; Frosz, M.H.; Ahmed, G.; Edavalath, N.N.; Ménard, J.M.; Russell, P.S. Broadband Robustly Single-Mode Hollow-Core PCF by Resonant Filtering of Higher-Order Modes. Opt. Lett. 2016, 41, 1961. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.K.; Wang, W.S. Design and Fabrication of Sidewalls-Extended Electrode Configuration for Ridged Lithium Niobate Electrooptical Modulator. J. Light. Technol. 2008, 26, 286–290. [Google Scholar] [CrossRef]
- Li, J.-Y.; Lu, D.-F.; Qi, Z.-M. Analyses of Wavelength Dependence of the Electro-Optic Overlap Integral Factor for LiNbO3 Channel Waveguides. Acta Phys. Sin. 2014, 63, 077801. [Google Scholar]
- Song, Y.; Li, W.; Xu, X.; Gao, F.; Song, N. Cold Atoms Guidance into Anti-Resonant Hollow-Core Fibers. Chin. J. Sci. Instrum. 2023, 44, 127–134. [Google Scholar]
- Steck, D.A. Rubidium 87 D Line Data. 2023. Available online: https://steck.us/alkalidata (accessed on 26 April 2024).
- Dotsenko, I.; Alt, W.; Kuhr, S.; Schrader, D.; Müller, M.; Miroshnychenko, Y.; Gomer, V.; Rauschenbeutel, A.; Meschede, D. Application of Electro-Optically Generated Light Fields for Raman Spectroscopy of Trapped Cesium Atoms. Appl. Phys. B 2004, 78, 711–717. [Google Scholar] [CrossRef]
- Wu, X.; Zi, F.; Dudley, J.; Bilotta, R.J.; Canoza, P.; Müller, H. Multiaxis Atom Interferometry with a Single-Diode Laser and a Pyramidal Magneto-Optical Trap. Optica 2017, 4, 1545. [Google Scholar] [CrossRef]
- Moler, K.; Weiss, D.S.; Kasevich, M.; Chu, S. Theoretical Analysis of Velocity-Selective Raman Transitions. Phys. Rev. A 1992, 45, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.S.; Antonio-Lopez, J.E.; Markos, C.; Schülzgen, A.; Amezcua-Correa, R. Single-Mode, Low Loss Hollow-Core Anti-Resonant Fiber Designs. Opt. Express 2019, 27, 3824. [Google Scholar] [CrossRef] [PubMed]
- Kasevich, M.; Weiss, D.S.; Riis, E.; Moler, K.; Kasapi, S.; Chu, S. Atomic Velocity Selection Using Stimulated Raman Transitions. Phys. Rev. Lett. 1991, 66, 2297–2300. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chen, X.; Fang, J.; Chen, Q.; Sun, H.; Wang, Y.; Zhong, J.; Zhou, L.; He, C.; Li, J.; et al. The Space Cold Atom Interferometer for Testing the Equivalence Principle in the China Space Station. NPJ Microgravity 2023, 9, 58. [Google Scholar] [CrossRef]
- Leong, W.S.; Xin, M.; Chen, Z.; Chai, S.; Wang, Y.; Lan, S.Y. Large Array of Schrödinger Cat States Facilitated by an Optical Waveguide. Nat. Commun. 2020, 11, 5295. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Li, W.; Xu, X.; Han, R.; Gao, C.; Dai, C.; Song, N. Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber. Photonics 2024, 11, 428. https://doi.org/10.3390/photonics11050428
Song Y, Li W, Xu X, Han R, Gao C, Dai C, Song N. Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber. Photonics. 2024; 11(5):428. https://doi.org/10.3390/photonics11050428
Chicago/Turabian StyleSong, Yitong, Wei Li, Xiaobin Xu, Rui Han, Chengchun Gao, Cheng Dai, and Ningfang Song. 2024. "Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber" Photonics 11, no. 5: 428. https://doi.org/10.3390/photonics11050428
APA StyleSong, Y., Li, W., Xu, X., Han, R., Gao, C., Dai, C., & Song, N. (2024). Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber. Photonics, 11(5), 428. https://doi.org/10.3390/photonics11050428