Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances
Abstract
:1. Introduction
2. Metasurfaces and Metaphotonics
2.1. Introduction: From Optical Metamaterials to Metasurfaces and General Metaphotonics
2.1.1. Some Properties of Optical Metasurfaces
2.1.2. Uses of Optical Metasurfaces
2.2. Classifications of Optical Metasurfaces
2.3. Advanced and Specialized Metasurfaces
2.3.1. Topological Metasurfaces
2.3.2. Meta-Holograms
2.3.3. Nonreciprocal Metasurfaces
2.3.4. Quantum Metasurfaces
2.3.5. Tunable Metasurfaces
- Optical modulation is the fastest method of tuning metasurfaces, its ultrafast speeds even reaching the femtosecond to picosecond range. The control signal in this case is a light beam, so the system is all-optical, including both the hardware and the modulating signal. Typically, nonlinear optical effects are used (although they are not the only convenient mechanism). The external light beam intensity, spectral distribution or polarization are used to control the properties of the functional material of the metasurface.
- 2.
- Electric field modulation is probably the oldest and most well-established method for dynamically tuning the optical properties of metasurfaces [188]. It uses an external electric field to modify the complex refractive index (i.e., including absorption), and the structural characteristics of both the metasurface with its meta-atoms and of their surroundings. There are several mechanisms that are used for this purpose, depending on the functional materials used. One can use electro-optic materials like, e.g., lithium niobate or III-V semiconductors like gallium arsenide. The applied electric field can act through the Pockels effect, causing a linear response, or the Kerr effect, causing quadratic changes. Among the advantages of this method is that it is fast, while the technology of the incorporation of electro-optic materials, structures and even devices is mature, well-known and not only compatible with planar processes but directly belonging to them. Another approach is the use of 2D materials like graphene, transition metal carbides, nitrides or carbonitrides—MXenes (e.g., Ti3C2, Mo2C, Ti4N3 and a lot more), or transition metal dichalcogenides—TMD (e.g., MoS2, WS2, etc.). Electric field changes charge carrier concentration in 2D materials, thus modifying their conductivity and the optical parameters related to it. This alternative approach also ensures a very fast response. One can make transistor structures enhanced with 2D materials, thus ensuring a further degree of control. Liquid crystals (nematic, cholesteric, columnar and smectic) are also an often-met group of materials when tuning metasurfaces by electric field. Their refractive index is thus changed, as well as the orientation of their molecules. One can tune the phase, amplitude and polarization of optical waves, but the speed is lower than that attained with, e.g., 2D materials or electro-optic setups. The next group are transparent conductive oxides (TCOs), where maybe the best known and most often used are indium tin oxide (ITO) and aluminum-doped zinc oxide (AZO). In these plasmonic materials, the electric field modifies both their carrier concentration and their plasma frequency. An example of the use of TCO in metasurfaces is gate-tunable field effect transistors (FETs) incorporating ITO or AZO, as described in the paper by Shirmanesh et al. [188]. In their ITO-gated FET they achieved simultaneously in the same device both dynamic light beam steering and its reconfigurable focusing. The next group is multiple quantum wells supporting intersubband transitions which, besides their optical and electric properties being controlled, also offer quantum effects. An example is multiple quantum wells based on III-V semiconductors which have been used for beam steering by metasurfaces through applying the quantum-confined Stark effect [189].
- 3.
- Thermal tuning [190]. Many optical materials will have their complex refractive index dependent on temperature (the thermo-optic effect). In metasurfaces, this effect will be local because of their heterogeneous structure in which each constituent material has its own thermo-optic coefficient. In addition to that, if semiconductors or plasmonic materials are used, a temperature increase will result in a charge concentration increase, thus strongly affecting not only their refractive index but the plasmon resonance frequency and thus the whole spectral dispersion.
- 4.
- Phase-change materials—PCMs (e.g., vanadium oxide, chalcogenide glasses and especially Ge2Sb2Te5 (GST), an optical material used in rewritable optical disks) are also used for tunable metasurfaces. A group of their own, their phase transitions can be switched thermally, optically and sometimes electrically. The manners in which these phase transitions influence the optical properties of metasurfaces are the complex refractive index change (including absorptive losses) and electrical conductivity. For instance, VO2 switches from an insulator to a conductor with a temperature change. A rich and multifunctional use of PCM, or, more precisely, of GST in reconfigurable metasurfaces obtained by femtosecond laser pulses was described in [192]. Electrically tunable PCMs were presented in [193].
- 5.
- Structural modifications through mechanical deformations as a tuning method for optical metasurfaces [194] mean the application of mechanical forces to modify meta-atom geometry (their overall shape and/or structure, including their height and width) or parts or even the whole metasurface through rearranging the relative position of meta-atoms on the metasurface (the distance among the elements is changed, thus modifying the periodicity of the unit cells or supercells). Both approaches modify the near-field interactions between meta-atoms. The mechanical forces can be applied directly (by stretching, pressing or straining the whole metasurface) or indirectly, by integration with some kind of actuators, for instance MEMS [195] or NEMS devices (nano-mechanical reconfiguration of metasurfaces) [196] or even microfluidic structures, whose microchannels can influence the metasurface geometry by applying pressure. Mechanical deformations can generally be local (acting with precision on some specific point or points, like for instance by pressurized fluidics) or global (using a flexible substrate for metasurfaces that can be stretched or compressed, e.g., an elastomeric material, and then applying mechanical force to it to modify its overall shape; another global method is shifting two distinct metasurface blocks in parallel) [15]. The resulting changes in the geometric parameters will affect the overall optical behavior of the metasurface. Flexible metasurfaces can also be bended or twisted, making out-of-plane deformations that influence the optical properties.
- 6.
- Optofluidic modulation [197]. This includes microfluidic and nanofluidic changes. This approach represents manipulation with fluids at the microscale and possibly even nanoscale that changes the refractive index of the area around the structure by introducing their own, thus altering the optical properties of the metasurface. This ensures dynamic control of the metasurface electromagnetic response. A problem is a low speed, limited by the optofluidic kinetics.
- 7.
- Chemical modulation [198]. Microchannel tubes filled with chemicals can be interwoven with the metasurface structure. The chemicals are used to modify the complex refractive index of the metasurface. Simple water or ethanol solutions can be used. If necessary, the chemical can be replaced by another.
- 8.
- Hydrogenation/dehydrogenation cycle of transition metals [175]. If one exposes transition metal to hydrogen, a metal hydride is formed through the process of hydrogenation. The obtained material is a dielectric and its optical parameters are dramatically modified in that manner. The return to the previous metallic state is done by simply exposing the hydride to oxygen and thus performing dehydrogenation and resetting the optical parameters to their original value. This tuning method represents a switching process.
- 9.
- Magnetic fields can be used in metasurface tuning when applied to magneto-optical materials, thus increasing Faraday rotation in Fano-resonant structures. A metasurface composed of ferrite rods and metallic foils was tuned by a magnetic field through adjusting the thickness of its ferrite rods, thus obtaining metasurfaces with different gradients of the rod thickness [199].
- 10.
- Hybridized (multistimuli) modulation encompasses the cases when two or more of the above-listed methods are simultaneously used. These allow one to enter the tuning ranges unattainable by any single method. In addition to that, new functionalities are achievable. Zou et al. [200] introduced the concept of multistimuli metasurfaces and illustrated it by describing a liquid crystal on silicon metasurface which is at the same time responsive to electric and thermal activation and modulation. Copolymer metasurfaces with dual sensitivity to optical and thermal modulation were also described [201]. Simultaneous electric and magnetic tuning was presented by Izdebskaya et al. [202].
2.3.6. Digital Coding Metasurfaces
2.3.7. Intelligent Metasurfaces
2.3.8. Neuromorphic Metasurfaces
3. AI for Metaphotonics
3.1. Introductory Remarks
3.2. Overview of Some AI Optimization and Design Methods
3.2.1. General Heuristic Methods
3.2.2. Machine Learning Based on Direct Mathematical Procedures
3.2.3. Machine Learning Based on Deep Neural Networks
Convolutional Neural Network (CNN)
Recurrent Neural Network (RNN)
Transformer Neural Network (TNN)
Generative Adversarial Network (GAN)
Autoencoder
Other Types of NN
3.2.4. Hybrid ML Models
3.2.5. Multi-Objective Optimization
3.3. AI and First-Principles Analysis for Metasurfaces through Surrogate Modeling
3.4. Forward Design of Metasurfaces
3.4.1. Forward Design Using Metaheuristics
3.4.2. Forward Design Using Deep Neural Networks
3.5. Inverse Design of Metasurfaces
3.5.1. Metaheuristics for Inverse Design of Metasurfaces
3.5.2. Deep Learning NN for Inverse Design of Metasurfaces
3.5.3. Hybrid Approach to the Inverse Design of Metasurfaces
3.6. Bidirectional Design
4. Metaphotonics-Based AI Hardware
4.1. Optical Neural Networks
4.2. A very Short History
4.3. Metasurfaces with Hardware-Integrated Optical Neural Networks
5. Discussion, Challenges and Outlook
5.1. Selected General Issues
- Their miniaturization, especially regarding their minuscule thickness and the dimensions of their meta-atoms;
- The possibility to tailor them at will, including their spatiotemporal tunability, bringing an almost infinite number of novel light processing functionalities;
- The possibility to impart them intelligent functionalities, which brings an enormous number of novel potential applications;
- High speed, high parallelization and low power consumption.
5.2. Usefulness of AI in Material Science in Metasurface Synthesis, Optimization, Characterization and Applications
5.3. Challenges
5.3.1. Inherent Uncertainty of AI Algorithms
5.3.2. Lab-to-Fab Upscaling
5.3.3. Free-Space Scattering Losses
5.3.4. Noise in Optical Metasurfaces
5.3.5. DONN Metasurfaces and Optical Nonlinearity
5.3.6. Multitasking with DONN Metasurfaces
5.3.7. Particular Challenges
5.4. Perspectives (Possible Research Directions to Overcome Challenges)
6. Speculative Consideration of Some Possible Alternative Directions
6.1. Alternative All-Optical Hardware Implementations: Metaheuristics on a Metasurface
6.2. Self-Evolving Intelligent Metasurfaces
7. Possible Risks and Ethical Questions
8. Conclusions
- An attempt to disclose an easy-to-follow overview of snapshots of the most recent and most interesting developments in as systematic yet simple a manner as achievable (bearing in mind that full generality would have been literally impossible at this level of diversification and sophistication in the field).
- Presentation of some particularities of metamaterials, metasurfaces and metaphotonics, from the very roots of the fields to the contemporary breakthroughs, with the accent on the latest trends.
- Presentation of some particularities of AI of interest for the AI–metasurface synergy, again starting from the field roots and ending with the latest trends.
- Consideration of the use of AI for the design and optimization of metasurfaces (including forward, inverse and bidirectional end-to-end approaches), often with possible solutions proposed.
- Consideration of metasurfaces used for the hardware implementation of AI in the form of diffractive optical neural networks, again with proposals of selected likely solutions to some of the current challenges.
- Critical re-examination of certain subtopics, including the clarification of some ambiguities often met in nomenclature.
- Inclusion of certain fields of importance seldom touched upon within the context of AI–metasurface synergy, for instance, the fundamental and fabrication-induced mechanisms of noise and their main detrimental effects, but also their beneficial uses.
- A consideration of certain speculative ideas and approaches that could be rather useful in the foreseeable future and may be of interest to those scholars grappling with certain current open problems in the field, as well to many of those with general interest in some potential future solutions.
- A general consideration of the challenges and advantages in the field.
- An examination of possible safety risks and ethical questions related to the field.
- An offer of a different and alternative perspective to a frequently analyzed and reviewed field.
- A consideration that is organized to be maximally reader-friendly towards an interdisciplinary and multidisciplinary audience, to this end offering as simple an approach as reasonable.
Funding
Acknowledgments
Conflicts of Interest
References
- Chowdhary, K.R. Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020. [Google Scholar] [CrossRef]
- Wang, H.; Fu, T.; Du, Y.; Gao, W.; Huang, K.; Liu, Z.; Chandak, P.; Liu, S.; Van Katwyk, P.; Deac, A.; et al. Scientific discovery in the age of artificial intelligence. Nature 2023, 620, 47–60. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, J.; Su, H. Toward the third generation artificial intelligence. Sci. China Inf. Sci. 2023, 66, 121101. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, F.; Chen, J.; Tao, C.; Li, Y.; Chen, Q.; Tang, S.; Lee, H.K.; Shen, W. Artificial intelligence-assisted smartphone-based sensing for bioanalytical applications: A review. Biosens. Bioel. 2023, 229, 115233. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Liu, Z.; Liu, T.; Zhao, Y.; Chai, Y. Design and user experience analysis of AR intelligent virtual agents on smartphones. Cogn. Syst. Res. 2023, 78, 33–47. [Google Scholar] [CrossRef]
- Ahammed, T.B.; Patgiri, R.; Nayak, S. A vision on the artificial intelligence for 6G communication. ICT Express 2023, 9, 197–210. [Google Scholar] [CrossRef]
- Abed, A.K.; Anupam, A. Review of security issues in Internet of Things and artificial intelligence-driven solutions. Secur. Priv. 2023, 6, e285. [Google Scholar] [CrossRef]
- Kinder, T.; Stenvall, J.; Koskimies, E.; Webb, H.; Janenova, S. Local public services and the ethical deployment of artificial intelligence. Gov. Inf. Q. 2023, 40, 101865. [Google Scholar] [CrossRef]
- Chin, C.-H.; Wong, W.P.M.; Cham, T.-H.; Thong, J.Z.; Ling, J.P.-W. Exploring the usage intention of AI-powered devices in smart homes among millennials and zillennials: The moderating role of trust. Young Consum. 2024, 25, 1–27. [Google Scholar] [CrossRef]
- Fui-Hoon Nah, F.; Zheng, R.; Cai, J.; Siau, K.; Chen, L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. J. Inf. Technol. Case Appl. Res. 2023, 25, 277–304. [Google Scholar] [CrossRef]
- Epstein, Z.; Hertzmann, A.; the Investigators of Human Creativity. Art and the science of generative AI. Science 2023, 380, 1110–1111. [Google Scholar] [CrossRef]
- Ataloglou, V.G.; Taravati, S.; Eleftheriades, G.V. Metasurfaces: Physics and applications in wireless communications. Natl. Sci. Rev. 2023, 10, nwad164. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Tian, Y.; Zhang, H.; Di, B.; Song, L. Reconfigurable Holographic Surface Aided Collaborative Wireless SLAM Using Federated Learning for Autonomous Driving. IEEE Trans. Intell. Veh. 2023, 8, 4031–4046. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Recent Development in Metasurfaces: A Focus on Sensing Applications. Nanomaterials 2023, 13, 118. [Google Scholar] [CrossRef]
- Gu, T.; Kim, H.J.; Rivero-Baleine, C.; Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photonics 2023, 17, 48–58. [Google Scholar] [CrossRef]
- Rahul, M.; Jayaprakash, J. Mathematical model automotive part shape optimization using metaheuristic method-review. Mater. Today Proc. 2021, 47, 100–103. [Google Scholar] [CrossRef]
- Yüksel, N.; Börklü, H.R.; Sezer, H.K.; Canyurt, O.E. Review of artificial intelligence applications in engineering design perspective. Eng. Appl. Artif. Intell. 2023, 118, 105697. [Google Scholar] [CrossRef]
- Champasak, P.; Panagant, N.; Pholdee, N.; Vio, G.A.; Bureerat, S.; Yildiz, B.S.; Yıldız, A.R. Aircraft conceptual design using metaheuristic-based reliability optimisation. Aerosp. Sci. Technol. 2022, 129, 107803. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 2023, 216, 119456. [Google Scholar] [CrossRef]
- Gupta, D.G.; Jain, V. Use of Artificial Intelligence with Ethics and Privacy for Personalized Customer Services. In Artificial Intelligence in Customer Service: The Next Frontier for Personalized Engagement; Sheth, J.N., Jain, V., Mogaji, E., Ambika, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 231–257. [Google Scholar] [CrossRef]
- Noreen, U.; Shafique, A.; Ahmed, Z.; Ashfaq, M. Banking 4.0: Artificial Intelligence (AI) in Banking Industry & Consumer’s Perspective. Sustainability 2023, 15, 3682. [Google Scholar] [CrossRef]
- Vullam, N.; Yakubreddy, K.; Vellela, S.S.; Basha, K.; Reddy, V.; Priya, S.S. Prediction And Analysis Using A Hybrid Model For Stock Market. In Proceedings of the 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 23–25 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Banaeian Far, S.; Imani Rad, A.; Rajabzadeh Asaar, M. Blockchain and its derived technologies shape the future generation of digital businesses: A focus on decentralized finance and the Metaverse. Data Sci. Manag. 2023, 6, 183–197. [Google Scholar] [CrossRef]
- Kamalov, F.; Santandreu Calonge, D.; Gurrib, I. New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability 2023, 15, 12451. [Google Scholar] [CrossRef]
- Ness, S.; Shepherd, N.J.; Xuan, T.R. Synergy Between AI and Robotics: A Comprehensive Integration. Asian J. Res. Comput. Sci. 2023, 16, 80–94. [Google Scholar] [CrossRef]
- Rashid, A.B.; Kausik, A.K.; Al Hassan Sunny, A.; Bappy, M.H. Artificial Intelligence in the Military: An Overview of the Capabilities, Applications, and Challenges. Int. J. Intell. Syst. 2023, 2023, 8676366. [Google Scholar] [CrossRef]
- Noorden, R.V.; Perkel, J.M. AI and science: What 1,600 researchers think. Nature 2023, 621, 672–675. [Google Scholar] [CrossRef]
- Zohny, H.; McMillan, J.; King, M. Ethics of generative AI. J. Med. Ethics 2023, 49, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Baev, A.; Prasad, P.N.; Ågren, H.; Samoć, M.; Wegener, M. Metaphotonics: An emerging field with opportunities and challenges. Phys. Rep. 2015, 594, 1–60. [Google Scholar] [CrossRef]
- Kim, J.; Seong, J.; Kim, W.; Lee, G.-Y.; Kim, S.; Kim, H.; Moon, S.-W.; Oh, D.K.; Yang, Y.; Park, J.; et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 2023, 22, 474–481. [Google Scholar] [CrossRef]
- Kirill, L.K.; Pavel, T.; Yuri, S.K. Nonlinear chiral metaphotonics: A perspective. Adv. Photonics 2023, 5, 064001. [Google Scholar] [CrossRef]
- Koshelev, K.; Kivshar, Y. Dielectric Resonant Metaphotonics. ACS Photonics 2021, 8, 102–112. [Google Scholar] [CrossRef]
- Solntsev, A.S.; Agarwal, G.S.; Kivshar, Y.S. Metasurfaces for quantum photonics. Nat. Photonics 2021, 15, 327–336. [Google Scholar] [CrossRef]
- Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, H.; Liu, C.; Li, L.; Cui, T.J. Intelligent metasurfaces: Control, communication and computing. eLight 2022, 2, 7. [Google Scholar] [CrossRef]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of mu and epsilon. Sov. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Mandelshtam, L.I. Lectures on Some Problems of the Theory of Oscillations (in Russian); Academy of Sciences: Moscow, Russia, 1944. [Google Scholar]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE T. Microw. Theory 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Simovski, C.; Tretyakov, S. Metamaterials. In An Introduction to Metamaterials and Nanophotonics; Simovski, C., Tretyakov, S., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 26–62. [Google Scholar] [CrossRef]
- Choi, M.; Lee, S.H.; Kim, Y.; Kang, S.B.; Shin, J.; Kwak, M.H.; Kang, K.Y.; Lee, Y.H.; Park, N.; Min, B. A terahertz metamaterial with unnaturally high refractive index. Nature 2011, 470, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Liberal, I.; Engheta, N. Near-zero refractive index photonics. Nat. Photonics 2017, 11, 149–158. [Google Scholar] [CrossRef]
- Dai, J.; Jiang, H.; Guo, Z.; Qiu, J. Tunable Epsilon-and-Mu-Near-Zero Metacomposites. Adv. Funct. Mater. 2023, 34, 2308338. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, B.; Wang, S. Review and perspective on acoustic metamaterials: From fundamentals to applications. Appl. Phys. Lett. 2023, 123, 010502. [Google Scholar] [CrossRef]
- Kovács, R. Heat equations beyond Fourier: From heat waves to thermal metamaterials. Phys. Rep. 2024, 1048, 1–75. [Google Scholar] [CrossRef]
- Wang, Y.; Sha, W.; Xiao, M.; Qiu, C.-W.; Gao, L. Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials. Adv. Mat. 2023, 35, 2302387. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Mueller, J.; Raney, J.R.; Zheng, X.; Alavi, A.H. Mechanical metamaterials and beyond. Nat. Commum. 2023, 14, 6004. [Google Scholar] [CrossRef]
- Zaiser, M.; Zapperi, S. Disordered mechanical metamaterials. Nat. Rev. Phys. 2023, 5, 679–688. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, Z.; Wang, K.; Chen, Y.; Zhu, R.; Huang, G.; Hu, G. Engineering zero modes in transformable mechanical metamaterials. Nat. Commum. 2023, 14, 1266. [Google Scholar] [CrossRef]
- Kuester, E.F.; Mohamed, M.A.; Piket-May, M.; Holloway, C.L. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE T. Antenn. Propag. 2003, 51, 2641–2651. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Baena, J.D.; Bonache, J.; Beruete, M.; Marqués, R.; Martín, F.; Sorolla, M. Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Phys. Rev. Lett. 2004, 93, 197401. [Google Scholar] [CrossRef] [PubMed]
- Lalanne, P.; Chavel, P. On the prehistory of optical metasurfaces. Photoniques 2023, 119, 41–45. [Google Scholar] [CrossRef]
- Simovski, C.; Tretyakov, S. Metasurfaces. In An Introduction to Metamaterials and Nanophotonics; Simovski, C., Tretyakov, S., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 63–92. [Google Scholar] [CrossRef]
- Su, V.-C.; Chu, C.H.; Sun, G.; Tsai, D.P. Advances in optical metasurfaces: Fabrication and applications [Invited]. Opt. Express 2018, 26, 13148–13182. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Boltasseva, A.; Atwater, H.A. Low-Loss Plasmonic Metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Naik, G.V.; Kim, J.; Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 2011, 1, 1090–1099. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Vardaxoglou, J.; Whittow, W. A Metasurfaces Review: Definitions and Applications. Appl. Sci. 2019, 9, 2727. [Google Scholar] [CrossRef]
- Li, A.; Singh, S.; Sievenpiper, D. Metasurfaces and their applications. Nanophotonics 2018, 7, 989–1011. [Google Scholar] [CrossRef]
- Hu, J.; Bandyopadhyay, S.; Liu, Y.-H.; Shao, L.-Y. A Review on Metasurface: From Principle to Smart Metadevices. Front. Phys. 2021, 8, 586087. [Google Scholar] [CrossRef]
- Blaber, M.G.; Arnold, M.D.; Ford, M.J. Designing materials for plasmonic systems: The alkali-noble intermetallics. J. Phys.-Condens. Mat. 2009, 22, 095501. [Google Scholar] [CrossRef]
- Franzen, S. Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J. Phys. Chem. C 2008, 112, 6027–6032. [Google Scholar] [CrossRef]
- Jakšić, Z.; Vuković, S.M.; Matovic, J.; Tanasković, D. Negative Refractive Index Metasurfaces for Enhanced Biosensing. Materials 2010, 4, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Drude, P. The Theory of Optics; Dover Publications: Mineola, NY, USA, 2005. [Google Scholar]
- Choudhury, S.M.; Wang, D.; Chaudhuri, K.; DeVault, C.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Material platforms for optical metasurfaces. Nanophotonics 2018, 7, 959–987. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, F.; Jin, C.; Wang, S.; Cao, L.; Yang, Y. Monocular metasurface camera for passive single-shot 4D imaging. Nat. Commum. 2023, 14, 1035. [Google Scholar] [CrossRef]
- Intaravanne, Y.; Ansari, M.A.; Ahmed, H.; Bileckaja, N.; Yin, H.; Chen, X. Metasurface-Enabled 3-in-1 Microscopy. ACS Photonics 2023, 10, 544–551. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Jiang, C.; Xu, S.; Li, M. Monolithic Integrated Optical Telescope Based on Cascaded Metasurfaces. ACS Photonics 2023, 10, 2290–2296. [Google Scholar] [CrossRef]
- Shi, Z.; Wan, Z.; Zhan, Z.; Liu, K.; Liu, Q.; Fu, X. Super-resolution orbital angular momentum holography. Nat. Commum. 2023, 14, 1869. [Google Scholar] [CrossRef] [PubMed]
- Shaker, L.M.; Al-Amiery, A.; Isahak, W.N.R.W.; Al-Azzawi, W.K. Metasurface contact lenses: A futuristic leap in vision enhancement. J. Opt. 2023. [Google Scholar] [CrossRef]
- Yang, Y.; Seong, J.; Choi, M.; Park, J.; Kim, G.; Kim, H.; Jeong, J.; Jung, C.; Kim, J.; Jeon, G.; et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci. Appl. 2023, 12, 152. [Google Scholar] [CrossRef]
- Zeyang, L.; Danyan, W.; Hao, G.; Moxin, L.; Huixian, Z.; Cheng, Z. Metasurface-enabled augmented reality display: A review. Adv. Photonics 2023, 5, 034001. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Hsu, W.-L.; Yu, C.-Y.; Wang, C.-M. Antireflection of optical anisotropic dielectric metasurfaces. Sci. Rep. 2023, 13, 1641. [Google Scholar] [CrossRef]
- Alfieri, A.D.; Motala, M.J.; Snure, M.; Lynch, J.; Kumar, P.; Zhang, H.; Post, S.; Bowen, T.; Muratore, C.; Robinson, J.A.; et al. Ultrathin Broadband Metasurface Superabsorbers from a van der Waals Semimetal. Adv. Opt. Mater. 2023, 11, 2202011. [Google Scholar] [CrossRef]
- Wenger, T.; Muller, R.; Hill, C.J.; Fisher, A.; Ting, D.Z.; Wilson, D.; Gunapala, S.D.; Soibel, A. Infrared nBn detectors monolithically integrated with metasurface-based optical concentrators. Appl. Phys. Lett. 2022, 121, 181109. [Google Scholar] [CrossRef]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar photonics with metasurfaces. Science 2013, 339, 12320091–12320096. [Google Scholar] [CrossRef]
- Pors, A.; Nielsen, M.G.; Bozhevolnyi, S.I. Analog Computing Using Reflective Plasmonic Metasurfaces. Nano Lett. 2015, 15, 791–797. [Google Scholar] [CrossRef]
- Cotrufo, M.; Cordaro, A.; Sounas, D.L.; Polman, A.; Alù, A. Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum. Nat. Photonics 2024, 18, 81–90. [Google Scholar] [CrossRef]
- Miao, W.-C.; Hsiao, F.-H.; Sheng, Y.; Lee, T.-Y.; Hong, Y.-H.; Tsai, C.-W.; Chen, H.-L.; Liu, Z.; Lin, C.-L.; Chung, R.-J.; et al. Microdisplays: Mini-LED, Micro-OLED, and Micro-LED. Adv. Opt. Mater. 2023, 12, 2300112. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhou, S.; Yi, F. Metasurface Photodetectors. Micromachines 2021, 12, 1584. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A. LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium. Photonics 2021, 8, 65. [Google Scholar] [CrossRef]
- Li, Z.; Kong, X.; Zhang, J.; Shao, L.; Zhang, D.; Liu, J.; Wang, X.; Zhu, W.; Qiu, C.-W. Cryptography Metasurface for One-Time-Pad Encryption and Massive Data Storage. Laser Photonics Rev. 2022, 16, 2200113. [Google Scholar] [CrossRef]
- Ashrafi-Peyman, Z.; Jafargholi, A.; Moshfegh, A.Z. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting. Nanoscale 2024, 16, 3591–3605. [Google Scholar] [CrossRef]
- Williams, B.S.; Curwen, C.A. Metasurface-based THz Quantum Cascade Lasers. In Mid-Infrared and Terahertz Quantum Cascade Lasers; Botez, D., Belkin, M.A., Eds.; Cambridge University Press: Cambridge, UK, 2023; pp. 310–342. [Google Scholar] [CrossRef]
- Mohtashami, Y.; Heki, L.K.; Wong, M.S.; Smith, J.M.; Ewing, J.J.; Mitchell, W.J.; Nakamura, S.; DenBaars, S.P.; Schuller, J.A. Metasurface Light-Emitting Diodes with Directional and Focused Emission. Nano Lett. 2023, 23, 10505–10511. [Google Scholar] [CrossRef]
- Kim, M.; Kim, N.; Shin, J. Realization of all two-dimensional Bravais lattices with metasurface-based interference lithography. Nanophotonics 2024, 13, 1467–1474. [Google Scholar] [CrossRef]
- John-Herpin, A.; Tittl, A.; Kühner, L.; Richter, F.; Huang, S.H.; Shvets, G.; Oh, S.-H.; Altug, H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Adv. Mat. 2023, 35, 2110163. [Google Scholar] [CrossRef]
- Rosas, S.; Schoeller, K.A.; Chang, E.; Mei, H.; Kats, M.A.; Eliceiri, K.W.; Zhao, X.; Yesilkoy, F. Metasurface-Enhanced Mid-Infrared Spectrochemical Imaging of Tissues. Adv. Mat. 2023, 35, 2301208. [Google Scholar] [CrossRef] [PubMed]
- Kai, Y.; Lem, J.; Ossiander, M.; Meretska, M.L.; Sokurenko, V.; Kooi, S.E.; Capasso, F.; Nelson, K.A.; Pezeril, T. High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale. Opt. Express 2023, 31, 31308–31315. [Google Scholar] [CrossRef] [PubMed]
- Shitrit, N. Surface-emitting lasers meet metasurfaces. Light Sci. Appl. 2024, 13, 37. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, L.; Chen, Z.; Ansari, M.A.; Chen, X.; Chan, M. Polarization-multiplexed metaholograms with erasable functionality. J. Phys. D 2023, 56, 155102. [Google Scholar] [CrossRef]
- Naeem, T.; Kim, J.; Khaliq, H.S.; Seong, J.; Chani, M.T.S.; Tauqeer, T.; Mehmood, M.Q.; Massoud, Y.; Rho, J. Dynamic Chiral Metasurfaces for Broadband Phase-Gradient Holographic Displays. Adv. Opt. Mater. 2023, 11, 2202278. [Google Scholar] [CrossRef]
- Berestennikov, A.; Kiriushechkina, S.; Vakulenko, A.; Pushkarev, A.P.; Khanikaev, A.B.; Makarov, S.V. Perovskite Microlaser Integration with Metasurface Supporting Topological Waveguiding. ACS Nano 2023, 17, 4445–4452. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.E.S.; Carlsen, M.A.; Zambrana-Puyalto, X.; Raza, S. Non-imaging metasurface design for collimated beam shaping. Opt. Express 2023, 31, 37861–37870. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, J.; Ye, X.; Chen, Y.; Li, X.; Song, W.; Fang, B.; Chen, J.; Zhu, S.; Li, T. On-chip integration of metasurface-doublet for optical phased array with enhanced beam steering. Nanophotonics 2023, 12, 2425–2432. [Google Scholar] [CrossRef]
- Rezaee Rezvan, B.; Yazdi, M.; Hosseininejad, S.E. On the design of multi-vortex beam multiplexers using programmable metasurfaces. J. Opt. Soc. Am. B 2023, 40, 2979–2989. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, M.; Liu, J.; Wu, Z.; Teng, C.; Deng, S.; Liu, H.; Qu, S.; Yuan, L.; Cheng, Y. Ultra-compact on-chip meta-waveguide phase modulator based on split ring magnetic resonance. Appl. Opt. 2023, 62, 4060–4073. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.-W.; Qiu, C.-W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commum. 2013, 4, 2808. [Google Scholar] [CrossRef]
- Yang, S.; Ndukaife, J.C. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. Light Sci. Appl. 2023, 12, 188. [Google Scholar] [CrossRef]
- Yuan, L.; Zhao, Y.; Toma, A.; Aglieri, V.; Gerislioglu, B.; Yuan, Y.; Lou, M.; Ogundare, A.; Alabastri, A.; Nordlander, P.; et al. A Quasi-Bound States in the Continuum Dielectric Metasurface-Based Antenna–Reactor Photocatalyst. Nano Lett. 2024, 24, 172–179. [Google Scholar] [CrossRef]
- Karabchevsky, A.; Katiyi, A.; Ang, A.S.; Hazan, A. On-chip nanophotonics and future challenges. Nanophotonics 2020, 9, 3733–3753. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, X. A Review of Optical Tweezers with Metasurfaces. Photonics 2023, 10, 623. [Google Scholar] [CrossRef]
- Yao, Z.; Xia, X.; Hou, Y.; Zhang, P.; Zhai, X.; Chen, Y. Metasurface-enhanced optical lever sensitivity for atomic force microscopy. Nanotechnology 2019, 30, 365501. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef]
- Zhao, J.; Van Vleck, A.; Winetraub, Y.; Du, L.; Han, Y.; Aasi, S.; Sarin, K.Y.; de la Zerda, A. Rapid Cellular-Resolution Skin Imaging with Optical Coherence Tomography Using All-Glass Multifocal Metasurfaces. ACS Nano 2023, 17, 3442–3451. [Google Scholar] [CrossRef]
- Guan, S.; Cheng, J.; Tan, Z.; Fan, F.; Ji, Y.; Chang, S. Terahertz single pixel imaging with frequency-multiplexed metasurface modulation. Opt. Lasers Eng. 2023, 169, 107694. [Google Scholar] [CrossRef]
- Choi, K.R.; Li, S.; Ozerov, I.; Bedu, F.; Park, D.H.; Joo, B.C.; Wu, J.W.; Nic Chormaic, S.; Lee, Y.U. Fluorescence engineering in metamaterial-assisted super-resolution localization microscope. Nanophotonics 2023, 12, 2491–2498. [Google Scholar] [CrossRef]
- Tao, L.; Chen, C.; Xingjian, X.; Ji, C.; Shanshan, H.; Shining, Z. Revolutionary meta-imaging: From superlens to metalens. Photonics Insights 2023, 2, R01. [Google Scholar] [CrossRef]
- Vabishchevich, P.; Kivshar, Y. Nonlinear photonics with metasurfaces. Photonics Res. 2023, 11, B50–B64. [Google Scholar] [CrossRef]
- Tanuwijaya, R.S.; Liang, H.; Xi, J.; Wong, W.C.; Yung, T.K.; Tam, W.Y.; Li, J. Metasurface for programmable quantum algorithms with classical and quantum light. Nanophotonics 2024, 13, 927–936. [Google Scholar] [CrossRef]
- Forbes, A.; Youssef, M.; Singh, S.; Nape, I.; Ung, B. Quantum cryptography with structured photons. Appl. Phys. Lett. 2024, 124, 110501. [Google Scholar] [CrossRef]
- Wang, L.; Dong, J.; Zhang, W.; Zheng, C.; Liu, L. Deep Learning Assisted Optimization of Metasurface for Multi-Band Compatible Infrared Stealth and Radiative Thermal Management. Nanomaterials 2023, 13, 1030. [Google Scholar] [CrossRef]
- Gong, J.; Xiong, L.; Pu, M.; Wen, Y.; Cai, J.; Feng, X.; Pan, R.; He, Q.; Guo, Y.; Chi, N.; et al. High-Throughput Fabrication of Curved Plasmonic Metasurfaces for Switchable Beam Focusing and Thermal Infrared Cloaking. Adv. Opt. Mater. 2023, 11, 2300608. [Google Scholar] [CrossRef]
- Wu, N.; Jia, Y.; Qian, C.; Chen, H. Pushing the Limits of Metasurface Cloak Using Global Inverse Design. Adv. Opt. Mater. 2023, 11, 2202130. [Google Scholar] [CrossRef]
- Dehmollaian, M.; Lavigne, G.; Caloz, C. Transmittable Nonreciprocal Cloaking. Phys. Rev. Appl. 2023, 19, 014051. [Google Scholar] [CrossRef]
- Liao, J.; Ji, C.; Yuan, L.; Huang, C.; Wang, Y.; Peng, J.; Luo, X. Polarization-Insensitive Metasurface Cloak for Dynamic Illusions with an Electromagnetic Transparent Window. ACS Appl. Mater. Interfaces 2023, 15, 16953–16962. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Chen, T.; Wang, K.; Wu, H.; Lu, H. Metasurface-enabled electromagnetic illusion with genetic algorithm. Front. Mater. 2023, 10, 1289250. [Google Scholar] [CrossRef]
- Leonhardt, U. Optical Conformal Mapping. Science 2006, 312, 1777–1780. [Google Scholar] [CrossRef]
- Sheng, C.; Zhu, S.; Liu, H. Optical simulation of various phenomena in curved space on photonic chips. Adv. Phys. X 2023, 8, 2153626. [Google Scholar] [CrossRef]
- Yang, S.; Zetterstrom, O.; Mesa, F.; Quevedo-Teruel, O. Dispersion Analysis of Metasurfaces with Hexagonal Lattices with Higher Symmetries. IEEE J. Microw. 2023, 3, 1154–1165. [Google Scholar] [CrossRef]
- Budhu, J.; Ventresca, N.; Grbic, A. Unit Cell Design for Aperiodic Metasurfaces. IEEE T. Antenn. Propag. 2023, 71, 7387–7394. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, X.; Wang, G. Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics. Sci. Rep. 2014, 4, 5763. [Google Scholar] [CrossRef]
- Levine, D.; Steinhardt, P.J. Quasicrystals: A New Class of Ordered Structures. Phys. Rev. Lett. 1984, 53, 2477–2480. [Google Scholar] [CrossRef]
- Didari-Bader, A.; Saghaei, H. Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers. Opt. Express 2023, 31, 12653–12668. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Zhao, X.; Wang, J. Enhanced second harmonic generation from a quasi-periodic silver dendritic metasurface. Nanotechnology 2024, 35, 035202. [Google Scholar] [CrossRef]
- Nagar, J.; Campbell, S.D.; Werner, D.H. Apochromatic singlets enabled by metasurface-augmented GRIN lenses. Optica 2018, 5, 99–102. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Tsilipakos, O. Recent advances in strongly resonant and gradient all-dielectric metasurfaces. Mater. Adv. 2023, 4, 11–34. [Google Scholar] [CrossRef]
- Ding, F.; Pors, A.; Bozhevolnyi, S.I. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2018, 81, 026401. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, G.; Liu, X.; Chen, J.; Tang, C. Spatial and frequency-selective optical field coupling absorption in an ultra-thin random metasurface. Opt. Lett. 2023, 48, 1586–1589. [Google Scholar] [CrossRef]
- Effah, E.; Nettey-Oppong, E.E.; Ali, A.; Byun, K.M.; Choi, S.H. Tunable Metasurfaces Based on Mechanically Deformable Polymeric Substrates. Photonics 2023, 10, 119. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Ai, B.; Yu, Y.; Möhwald, H.; Wang, L.; Zhang, G. Resonant Optical Transmission through Topologically Continuous Films. ACS Nano 2014, 8, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xu, L.; Powell, D.A.; Padilla, W.J.; Miroshnichenko, A.E. Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications. Phys. Rep. 2023, 1008, 1–66. [Google Scholar] [CrossRef]
- Jin, Y.; Rong, L.; Mu Ku, C.; Din Ping, T. Integrated-resonant metadevices: A review. Adv. Photonics 2023, 5, 024001. [Google Scholar] [CrossRef]
- Chu, Q.; Zhong, F.; Shang, X.; Zhang, Y.; Zhu, S.; Liu, H. Controlling thermal emission with metasurfaces and its applications. Nanophotonics 2024, 13, 1279–1301. [Google Scholar] [CrossRef]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517. [Google Scholar] [CrossRef]
- Ho, K.-S.; Pyon, J.-S.; Kim, J.-S.; Im, S.-J.; Kim, K.-D.; Song, K.-S.; Pae, J.-S.; Ri, C.-S. Ultrahigh efficiency plasmonic mode conversion between symmetric and antisymmetric modes in metal slab waveguides by introducing a gyration-managed waveguide link. Phys. Rev. B 2024, 109, L041402. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Duan, K.; Yang, W.; Chen, K.; Zhao, J.; Jiang, T.; Feng, Y. Chirality-Switching and Reconfigurable Spin-Selective Wavefront by Origami Deformation Metasurface. Laser Photonics Rev. 2024, 18, 2300720. [Google Scholar] [CrossRef]
- Yang, Y.; Jing, L.; Zheng, B.; Hao, R.; Yin, W.; Li, E.; Soukoulis, C.M.; Chen, H. Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase. Adv. Mat. 2016, 28, 6866–6871. [Google Scholar] [CrossRef]
- Whiting, E.B.; Campbell, S.D.; Kang, L.; Werner, D.H. Meta-atom library generation via an efficient multi-objective shape optimization method. Opt. Express 2020, 28, 24229–24242. [Google Scholar] [CrossRef] [PubMed]
- Spägele, C.; Tamagnone, M.; Kazakov, D.; Ossiander, M.; Piccardo, M.; Capasso, F. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat. Commun. 2021, 12, 3787. [Google Scholar] [CrossRef]
- Yeung, C.; Tsai, J.-M.; King, B.; Pham, B.; Ho, D.; Liang, J.; Knight, M.W.; Raman, A.P. Multiplexed supercell metasurface design and optimization with tandem residual networks. Nanophotonics 2021, 10, 1133–1143. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Duan, Y.; Ni, X. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl. 2019, 8, 123. [Google Scholar] [CrossRef]
- Ren, Y.; Lu, Y.; Zang, T.; Wang, Y.; Dai, Y.; Wang, P. Multi-mode resonance properties of two-dimensional metal-dielectric-metal fishnet metasurface at visible wavelengths. Opt. Express 2017, 25, 28417–28426. [Google Scholar] [CrossRef]
- Xiao, J.; Plaskocinski, T.; Biabanifard, M.; Persheyev, S.; Di Falco, A. On-Chip Optical Trapping with High NA Metasurfaces. ACS Photonics 2023, 10, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Milione, G.; Evans, S.; Nolan, D.A.; Alfano, R.R. Higher Order Pancharatnam-Berry Phase and the Angular Momentum of Light. Phys. Rev. Lett. 2012, 108, 190401. [Google Scholar] [CrossRef]
- Gigli, C.; Li, Q.; Chavel, P.; Leo, G.; Brongersma, M.L.; Lalanne, P. Fundamental Limitations of Huygens’ Metasurfaces for Optical Beam Shaping. Laser Photonics Rev. 2021, 15, 2000448. [Google Scholar] [CrossRef]
- Madeleine, T.; Podoliak, N.; Buchnev, O.; Membrillo Solis, I.; Orlova, T.; van Rossem, M.; Kaczmarek, M.; D’Alessandro, G.; Brodzki, J. Topological Learning for the Classification of Disorder: An Application to the Design of Metasurfaces. ACS Nano 2024, 18, 630–640. [Google Scholar] [CrossRef] [PubMed]
- You, J.W.; Lan, Z.; Ma, Q.; Gao, Z.; Yang, Y.; Gao, F.; Xiao, M.; Cui, T.J. Topological metasurface: From passive toward active and beyond. Photonics Res. 2023, 11, B65–B102. [Google Scholar] [CrossRef]
- Gabor, D. A New Microscopic Principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.; Zentgraf, T. Metasurface holography: From fundamentals to applications. Nanophotonics 2018, 7, 1169–1190. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhu, Q.; Wang, Z.; Xi, S.; Zhang, L.; Wang, H.; Zhang, Y. Dual-wavelength hologram based on dynamically adjustable cascading metasurface. Opt. Commun. 2024, 555, 130240. [Google Scholar] [CrossRef]
- Zhang, J.C.; Fan, Y.; Yao, J.; Chen, M.K.; Lin, S.; Liang, Y.; Leng, B.; Tsai, D.P. Programmable optical meta-holograms. Nanophotonics 2023, 13, 1201–1217. [Google Scholar] [CrossRef]
- Liu, C.; Yu, W.M.; Ma, Q.; Li, L.; Cui, T.J. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network. Photonics Res. 2021, 9, B159–B167. [Google Scholar] [CrossRef]
- Di, W.; Nan-Nan, L.; Yi-Long, L.; Yi-Wei, Z.; Zhong-Quan, N.; Zhao-Song, L.; Fan, C.; Qiong-Hua, W. Large viewing angle holographic 3D display system based on maximum diffraction modulation. Light Adv. Manuf. 2023, 4, 18. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, W.; Holman, A.; Kwon, M.; Masson, S.J.; Gutierrez-Jauregui, R.; Asenjo-Garcia, A.; Will, S.; Yu, N. Metasurface holographic optical traps for ultracold atoms. Prog. Quantum Electron. 2023, 89, 100470. [Google Scholar] [CrossRef]
- Komisar, D.; Kumar, S.; Kan, Y.; Meng, C.; Kulikova, L.F.; Davydov, V.A.; Agafonov, V.N.; Bozhevolnyi, S.I. Multiple channelling single-photon emission with scattering holography designed metasurfaces. Nat. Commum. 2023, 14, 6253. [Google Scholar] [CrossRef]
- Yang, J.-Z.; Zhao, R.-Z.; Meng, Z.; Li, J.; Wu, Q.-Y.; Huang, L.-L.; Zhang, A.-N. Quantum metasurface holography. Photonics Res. 2022, 10, 2607–2613. [Google Scholar] [CrossRef]
- Sheikh Ansari, A.; Iyer, A.K.; Gholipour, B. Asymmetric transmission in nanophotonics. Nanophotonics 2023, 12, 2639–2667. [Google Scholar] [CrossRef]
- Amra, C.; Passian, A.; Tchamitchian, P.; Ettorre, M.; Alwakil, A.; Zapien, J.A.; Rouquette, P.; Abautret, Y.; Zerrad, M. Linear-frequency conversion with time-varying metasurfaces. Phys. Rev. Res. 2024, 6, 013002. [Google Scholar] [CrossRef]
- Mekawy, A.; Sounas, D.L.; Alù, A. Free-Space Nonreciprocal Transmission Based on Nonlinear Coupled Fano Metasurfaces. Photonics 2021, 8, 139. [Google Scholar] [CrossRef]
- Li, A.; Wei, H.; Cotrufo, M.; Chen, W.; Mann, S.; Ni, X.; Xu, B.; Chen, J.; Wang, J.; Fan, S.; et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotech. 2023, 18, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Chen, H.; Cheng, Q.; Wang, H. Enhanced Faraday effect by magneto-plasmonic structure design composed of bismuth-iron garnet. Opt. Laser Technol. 2023, 161, 109193. [Google Scholar] [CrossRef]
- Mazor, Y.; Steinberg, B.Z. Metaweaves: Sector-Way Nonreciprocal Metasurfaces. Phys. Rev. Lett. 2014, 112, 153901. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Davoyan, A.R.; Engheta, N. All-passive nonreciprocal metastructure. Nat. Commun. 2015, 6, 8359. [Google Scholar] [CrossRef]
- Han, X.; Gomez-Diaz, J.S. Fundamental Limits of Nonreciprocal Plasmonic Metasurfaces. Authorea Prepr. 2023. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.B.; Wang, S.Y.; Liu, Y.H.; Hu, J.T.; Zeng, X.K.; Cui, T.J. Independent Manipulations of Transmitting and Receiving Channels by Nonreciprocal Programmable Metasurface. ACS Appl. Mater. Interfaces 2024, 16, 5234–5244. [Google Scholar] [CrossRef]
- Yang, W.; Qin, J.; Long, J.; Yan, W.; Yang, Y.; Li, C.; Li, E.; Hu, J.; Deng, L.; Du, Q.; et al. A self-biased non-reciprocal magnetic metasurface for bidirectional phase modulation. Nat. Electron. 2023, 6, 225–234. [Google Scholar] [CrossRef]
- Dong, X.; Liu, D.; Tian, M.; Liu, S.; Li, Y.; Hu, T.; He, Q.; Xu, H.; Li, Z. Characterizing quantum states of light using ghost imaging. Phys. Rev. Appl. 2023, 20, 044001. [Google Scholar] [CrossRef]
- Kan, Y.; Bozhevolnyi, S.I. Advances in Metaphotonics Empowered Single Photon Emission. Adv. Opt. Mater. 2023, 11, 2202759. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Grote, R.R.; Mann, S.A.; Hopper, D.A.; Exarhos, A.L.; Lopez, G.G.; Klein, A.R.; Garnett, E.C.; Bassett, L.C. A monolithic immersion metalens for imaging solid-state quantum emitters. Nat. Commun. 2019, 10, 2392. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Niu, J.; Gao, B.; Zhang, Y.; Feng, Y.; Gao, F.; Chen, H.; Qian, H. Tunable Metasurface Based on Plasmonic Quasi Bound State in the Continuum Driven by Metallic Quantum Wells. Adv. Opt. Mater. 2023, 11, 2202584. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Jiang, Y.; Fan, T.; Parry, M.; Neshev, D.N.; Sukhorukov, A.A. Polarization Engineering of Entangled Photons from a Lithium Niobate Nonlinear Metasurface. Nano Lett. 2023, 23, 8091–8098. [Google Scholar] [CrossRef]
- Badloe, T.; Lee, J.; Seong, J.; Rho, J. Tunable Metasurfaces: The Path to Fully Active Nanophotonics. Adv. Photonics Res. 2021, 2, 2000205. [Google Scholar] [CrossRef]
- Eaton, D.F. Nonlinear Optical Materials. Science 1991, 253, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.-Y.; Wang, A.Y.; Wei, W.-B.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. Recent progress in the design of IR nonlinear optical materials by partial chemical substitution: Structural evolution and performance optimization. Coord. Chem. Rev. 2023, 481, 215059. [Google Scholar] [CrossRef]
- Ron, R.; Zar, T.; Salomon, A. Linear and Nonlinear Optical Properties of Well-Defined and Disordered Plasmonic Systems: A Review. Adv. Opt. Mater. 2023, 11, 2201475. [Google Scholar] [CrossRef]
- Qu, L.; Bai, L.; Jin, C.; Liu, Q.; Wu, W.; Gao, B.; Li, J.; Cai, W.; Ren, M.; Xu, J. Giant Second Harmonic Generation from Membrane Metasurfaces. Nano Lett. 2022, 22, 9652–9657. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xu, L.; Huang, L.; Smirnova, D.; Kamali, K.Z.; Yousefi, A.; Deng, F.; Camacho-Morales, R.; Ying, C.; Miroshnichenko, A.E.; et al. Third-harmonic generation and imaging with resonant Si membrane metasurface. Opto-Electron. Adv. 2023, 6, 220174-1–220174-10. [Google Scholar] [CrossRef]
- Jangid, P.; Richter, F.U.; Tseng, M.L.; Sinev, I.; Kruk, S.; Altug, H.; Kivshar, Y. Spectral Tuning of High-Harmonic Generation with Resonance-Gradient Metasurfaces. Adv. Mat. 2024, 36, 2307494. [Google Scholar] [CrossRef] [PubMed]
- Black, J.A.; Newman, Z.L.; Yu, S.-P.; Carlson, D.R.; Papp, S.B. Nonlinear Networks for Arbitrary Optical Synthesis. Phys. Rev. X 2023, 13, 021027. [Google Scholar] [CrossRef]
- Moroshkin, P.; Plumitallo, J.; Ochiai, T.; Osgood, R.; Xu, J. Surface plasmon-polariton resonances and optical rectification in finite gratings. Phys. Rev. A 2023, 108, 033519. [Google Scholar] [CrossRef]
- Shen, D.; Cao, J.; Wan, W. Wavefront shaping with nonlinear four-wave mixing. Sci. Rep. 2023, 13, 2750. [Google Scholar] [CrossRef]
- Kang, L.; Wu, Y.; Werner, D.H. Nonlinear Chiral Metasurfaces Based on the Optical Kerr Effect. Adv. Opt. Mater. 2023, 11, 2202658. [Google Scholar] [CrossRef]
- Elsherbeny, A.M.; Arnous, A.H.; Biswas, A.; González-Gaxiola, O.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Alshehri, H.M. Highly Dispersive Optical Solitons with Four Forms of Self-Phase Modulation. Universe 2023, 9, 51. [Google Scholar] [CrossRef]
- Liu, X.; Jia, X.; Fischer, M.; Huang, Z.; Smith, D.R. Enhanced Two-Photon Photochromism in Metasurface Perfect Absorbers. Nano Lett. 2018, 18, 6181–6187. [Google Scholar] [CrossRef]
- Shirmanesh, G.K.; Sokhoyan, R.; Wu, P.C.; Atwater, H.A. Electro-optically Tunable Multifunctional Metasurfaces. ACS Nano 2020, 14, 6912–6920. [Google Scholar] [CrossRef]
- Wu, P.C.; Pala, R.A.; Kafaie Shirmanesh, G.; Cheng, W.-H.; Sokhoyan, R.; Grajower, M.; Alam, M.Z.; Lee, D.; Atwater, H.A. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 2019, 10, 3654. [Google Scholar] [CrossRef] [PubMed]
- Lewi, T.; Butakov, N.A.; Schuller, J.A. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics 2019, 8, 331–338. [Google Scholar] [CrossRef]
- Rahmani, M.; Xu, L.; Miroshnichenko, A.E.; Komar, A.; Camacho-Morales, R.; Chen, H.; Zárate, Y.; Kruk, S.; Zhang, G.; Neshev, D.N.; et al. Reversible Thermal Tuning of All-Dielectric Metasurfaces. Adv. Funct. Mater. 2017, 27, 1700580. [Google Scholar] [CrossRef]
- Wang, Q.; Rogers, E.T.F.; Gholipour, B.; Wang, C.-M.; Yuan, G.; Teng, J.; Zheludev, N.I. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 2016, 10, 60–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Fowler, C.; Liang, J.; Azhar, B.; Shalaginov, M.Y.; Deckoff-Jones, S.; An, S.; Chou, J.B.; Roberts, C.M.; Liberman, V.; et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotech. 2021, 16, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Gutruf, P.; Zou, C.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S.; Fumeaux, C. Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. ACS Nano 2016, 10, 133–141. [Google Scholar] [CrossRef]
- Meng, C.; Thrane, P.C.V.; Ding, F.; Gjessing, J.; Thomaschewski, M.; Wu, C.; Dirdal, C.; Bozhevolnyi, S.I. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv. 2021, 7, eabg5639. [Google Scholar] [CrossRef]
- Kwon, H.; Faraon, A. NEMS-Tunable Dielectric Chiral Metasurfaces. ACS Photonics 2021, 8, 2980–2986. [Google Scholar] [CrossRef]
- Li, Q.; van de Groep, J.; White, A.K.; Song, J.-H.; Longwell, S.A.; Fordyce, P.M.; Quake, S.R.; Kik, P.G.; Brongersma, M.L. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotech. 2022, 17, 1097–1103. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, D.; Wu, S.; Yin, Y.; Li, L.; Cao, K.; Huang, K. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution. Sci. Rep. 2017, 7, 3190. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yu, T.; Wang, Q.; Lei, M. Wave manipulation with magnetically tunable metasurfaces. Sci. Rep. 2017, 7, 5441. [Google Scholar] [CrossRef]
- Zou, C.; Amaya, C.; Fasold, S.; Muravsky, A.A.; Murauski, A.A.; Pertsch, T.; Staude, I. Multiresponsive Dielectric Metasurfaces. ACS Photonics 2021, 8, 1775–1783. [Google Scholar] [CrossRef]
- Zou, C.; Poudel, P.; Walden, S.L.; Tanaka, K.; Minovich, A.; Pertsch, T.; Schacher, F.H.; Staude, I. Multiresponsive Dielectric Metasurfaces Based on Dual Light- and Temperature-Responsive Copolymers. Adv. Opt. Mater. 2023, 11, 2202187. [Google Scholar] [CrossRef]
- Izdebskaya, Y.V.; Yang, Z.; Shvedov, V.G.; Neshev, D.N.; Shadrivov, I.V. Multifunctional Metasurface Tuning by Liquid Crystals in Three Dimensions. Nano Lett. 2023, 23, 9825–9831. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gurung, S.; Bej, S.; Ni, P.; Howard Lee, H.W. Active optical metasurfaces: Comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 2022, 85, 036101. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Chen, X.Q.; Zhang, L.; Cui, T.J. Intelligent autoencoder for space-time-coding digital metasurfaces. Appl. Phys. Lett. 2023, 122, 161702. [Google Scholar] [CrossRef]
- Qian, M.; Che, L.; Qiang, X.; Ze, G.; Xin Xin, G.; Lianlin, L.; Tie Jun, C. Information metasurfaces and intelligent metasurfaces. Photonics Insights 2022, 1, R01. [Google Scholar] [CrossRef]
- Saifullah, Y.; He, Y.; Boag, A.; Yang, G.-M.; Xu, F. Recent Progress in Reconfigurable and Intelligent Metasurfaces: A Comprehensive Review of Tuning Mechanisms, Hardware Designs, and Applications. Adv. Sci. 2022, 9, 2203747. [Google Scholar] [CrossRef]
- Yao, K.; Unni, R.; Zheng, Y. Intelligent nanophotonics: Merging photonics and artificial intelligence at the nanoscale. Nanophotonics 2019, 8, 339–366. [Google Scholar] [CrossRef]
- Badloe, T.; Lee, S.; Rho, J. Computation at the speed of light: Metamaterials for all-optical calculations and neural networks. Adv. Photonics 2022, 4, 064002. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, Z.; Xie, P.; Cai, D.; Meng, F.; Wang, C.; Wu, Q.; Liu, J.; Burokur, S.N.; Hu, G. Metasurface-Based Optical Logic Operators Driven by Diffractive Neural Networks. Adv. Mat. 2023, 36, 2308993. [Google Scholar] [CrossRef] [PubMed]
- Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Ivanov, D.; Chezhegov, A.; Kiselev, M.; Grunin, A.; Larionov, D. Neuromorphic artificial intelligence systems. Front. Neurosci. 2022, 16, 959626. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 2021, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xu, X.; Tan, M.; Sun, Y.; Li, Y.; Wu, J.; Morandotti, R.; Mitchell, A.; Xu, K.; Moss, D.J. Photonic multiplexing techniques for neuromorphic computing. Nanophotonics 2023, 12, 795–817. [Google Scholar] [CrossRef]
- Marcucci, G.; Pierangeli, D.; Conti, C. Theory of Neuromorphic Computing by Waves: Machine Learning by Rogue Waves, Dispersive Shocks, and Solitons. Phys. Rev. Lett. 2020, 125, 093901. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, H.J.; Dolev, S. Why future supercomputing requires optics. Nat. Photonics 2010, 4, 261–263. [Google Scholar] [CrossRef]
- Khan, H.N.; Hounshell, D.A.; Fuchs, E.R.H. Science and research policy at the end of Moore’s law. Nat. Electron. 2018, 1, 14–21. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef]
- Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhou, M.; Khoram, E.; Liu, B.; Yu, Z. Neuromorphic metasurface. Photonics Res. 2020, 8, 46–50. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.K.; Tsai, D.P. Photonic Meta-Neurons. Laser Photonics Rev. 2023, 18, 2300456. [Google Scholar] [CrossRef]
- Chen, M.K.; Liu, X.; Sun, Y.; Tsai, D.P. Artificial Intelligence in Meta-optics. Chem. Rev. 2022, 122, 15356–15413. [Google Scholar] [CrossRef] [PubMed]
- Gallinet, B.; Butet, J.; Martin, O.J.F. Numerical methods for nanophotonics: Standard problems and future challenges. Laser Photonics Rev. 2015, 9, 577–603. [Google Scholar] [CrossRef]
- Lavrinenko, A.V.; Lægsgaard, J.; Gregersen, N.; Schmidt, F.; Søndergaard, T. Numerical Methods in Photonics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- von Eschenbach, W.J. Transparency and the Black Box Problem: Why We Do Not Trust AI. Philos. Technol. 2021, 34, 1607–1622. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Rudin, C.; Radin, J. Why Are We Using Black Box Models in AI When We Don’t Need To? A Lesson from an Explainable AI Competition. Harv. Data Sci. Rev. 2019, 1, 2. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Omer, R.; Patel, P.; Qian, B.; Wen, Z.; Shah, T.; Morgan, G.; et al. Explainable AI (XAI): Core Ideas, Techniques, and Solutions. ACM Comput. Surv. 2023, 55, 194. [Google Scholar] [CrossRef]
- Bennet, P.; Langevin, D.; Essoual, C.; Khaireh-Walieh, A.; Teytaud, O.; Wiecha, P.; Moreau, A. Illustrated tutorial on global optimization in nanophotonics. J. Opt. Soc. Am. B 2024, 41, A126–A145. [Google Scholar] [CrossRef]
- Cerniauskas, G.; Sadia, H.; Alam, P. Machine intelligence in metamaterials design: A review. Oxf. Open Mater. Sci. 2024, 4, itae001. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Yu, Y.; Chen, J.; Wang, S.; Zhu, S.; Wang, Z. Unleashing the potential: AI empowered advanced metasurface research. Nanophotonics 2024, 13, 1239–1278. [Google Scholar] [CrossRef]
- Juan, A.A.; Keenan, P.; Martí, R.; McGarraghy, S.; Panadero, J.; Carroll, P.; Oliva, D. A review of the role of heuristics in stochastic optimisation: From metaheuristics to learnheuristics. Ann. Oper. Res. 2023, 320, 831–861. [Google Scholar] [CrossRef]
- Cheriyan, J.; Cummings, R.; Dippel, J.; Zhu, J. An improved approximation algorithm for the matching augmentation problem. SIAM J. Discret. Math. 2023, 37, 163–190. [Google Scholar] [CrossRef]
- Narendra, P.M.; Fukunaga, K. A Branch and Bound Algorithm for Feature Subset Selection. IEEE Trans. Comput. 1977, 26, 917–922. [Google Scholar] [CrossRef]
- Nadel, B.A. Constraint satisfaction algorithms. Comput. Intell. 1989, 5, 188–224. [Google Scholar] [CrossRef]
- Bahadori-Chinibelagh, S.; Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M. Two Constructive Algorithms to Address a Multi-Depot Home Healthcare Routing Problem. IETE J. Res. 2022, 68, 1108–1114. [Google Scholar] [CrossRef]
- Basu, A.; Conforti, M.; Di Summa, M.; Jiang, H. Complexity of branch-and-bound and cutting planes in mixed-integer optimization. Math. Program. 2023, 198, 787–810. [Google Scholar] [CrossRef]
- Smith, D.R. Top-down synthesis of divide-and-conquer algorithms. Artif. Intell. 1985, 27, 43–96. [Google Scholar] [CrossRef]
- Boettcher, S. Inability of a graph neural network heuristic to outperform greedy algorithms in solving combinatorial optimization problems. Nat. Mach. Intell. 2023, 5, 24–25. [Google Scholar] [CrossRef]
- Jacobson, S.H.; Yücesan, E. Analyzing the Performance of Generalized Hill Climbing Algorithms. J. Heuristics 2004, 10, 387–405. [Google Scholar] [CrossRef]
- Dutt, S.; Deng, W. Cluster-aware iterative improvement techniques for partitioning large VLSI circuits. ACM Trans. Des. Autom. Electron. Syst. 2002, 7, 91–121. [Google Scholar] [CrossRef]
- Gao, J.; Tao, X.; Cai, S. Towards more efficient local search algorithms for constrained clustering. Inf. Sci. 2023, 621, 287–307. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic Algorithms: A Comprehensive Review. In Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Sangaiah, A.K., Sheng, M., Zhang, Z., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 185–231. [Google Scholar] [CrossRef]
- Rajwar, K.; Deep, K.; Das, S. An exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challenges. Artif. Intell. Rev. 2023, 56, 13187–13257. [Google Scholar] [CrossRef]
- Montoya, O.D.; Molina-Cabrera, A.; Gil-González, W. A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science. Ingeniería 2022, 27, e19815. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q. Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm Evol. Comput. 2023, 77, 101248. [Google Scholar] [CrossRef]
- Jakšić, Z.; Devi, S.; Jakšić, O.; Guha, K. A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics. Biomimetics 2023, 8, 278. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives. Mach. Learn. Knowl. Extr. 2019, 1, 157–191. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances. In Handbook of Metaheuristics; Gendreau, M., Potvin, J.-Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–351. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Agarwal, T.; Kumar, V. A Systematic Review on Bat Algorithm: Theoretical Foundation, Variants, and Applications. Arch. Comput. Methods Eng. 2022, 29, 2707–2736. [Google Scholar] [CrossRef]
- Fister, I.; Fister, I.; Yang, X.-S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput. 2013, 13, 34–46. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022, 188, 116026. [Google Scholar] [CrossRef]
- Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [Google Scholar] [CrossRef]
- Burke, E.K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Qu, R. Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. 2013, 64, 1695–1724. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, L.; Gao, K. A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Expert Syst. Appl. 2020, 140, 112915. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples of Practical Applications in Medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef] [PubMed]
- Perera Anushka, A.H. Rathnayake Upaka Comparison of different artificial neural network (ANN) training algorithms to predict the atmospheric temperature in Tabuk, Saudi Arabia. MAUSAM 2020, 71, 233–244. [Google Scholar] [CrossRef]
- Jakšić, O.; Jakšić, Z.; Guha, K.; Silva, A.G.; Laskar, N.M. Comparing artificial neural network algorithms for prediction of higher heating value for different types of biomass. Soft Comput. 2022, 27, 5933–5950. [Google Scholar] [CrossRef]
- Yaghini, M.; Khoshraftar, M.M.; Fallahi, M. A hybrid algorithm for artificial neural network training. Eng. Appl. Artif. Intell. 2013, 26, 293–301. [Google Scholar] [CrossRef]
- Pishnamazi, B.; Koushki, E. Study of nonlinear optical diffraction patterns using machine learning models based on ResNet 152 architecture. AIP Adv. 2023, 13, 015020. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, Y.; Hou, F.; Yuan, J.; Tian, J.; Zhang, Y.; Shi, Z.; Fan, J.; He, Z. A Survey of Visual Transformers. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, F.; Manzoni, L.; D’onofrio, A.; Rodriguez, A.; Caravagna, G.; Bortolussi, L.; Cairoli, F. Data Symmetries and Learning in Fully Connected Neural Networks. IEEE Access 2023, 11, 47282–47290. [Google Scholar] [CrossRef]
- Liu, S.; Incorvia, J.A.C. Creating stochastic neural networks with the help of probabilistic bits. Nat. Electron. 2023, 6, 935–936. [Google Scholar] [CrossRef]
- Lin, R.; Zhai, Y.; Xiong, C.; Li, X. Inverse design of plasmonic metasurfaces by convolutional neural network. Opt. Lett. 2020, 45, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Wang, W. Convolutional Neural Network. In Intelligent Information Processing with Matlab; Zhang, X., Zhang, X., Wang, W., Eds.; Springer Nature: Singapore, 2023; pp. 39–71. [Google Scholar] [CrossRef]
- Stanković, L.; Mandic, D. Convolutional Neural Networks Demystified: A Matched Filtering Perspective-Based Tutorial. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3614–3628. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, J.; Li, X.; Ma, J.; Qi, M.; Yu, C.; Gao, W. Physics-informed recurrent neural network for time dynamics in optical resonances. Nat. Comput. Sci. 2022, 2, 169–178. [Google Scholar] [CrossRef]
- Jiang, T.; Li, T.; Huang, H.; Peng, Z.-K.; He, Q. Metamaterial-Based Analog Recurrent Neural Network Toward Machine Intelligence. Phys. Rev. Appl. 2023, 19, 064065. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Pan, Z.; Pan, X. Deep Learning and Adjoint Method Accelerated Inverse Design in Photonics: A Review. Photonics 2023, 10, 852. [Google Scholar] [CrossRef]
- Fowler, C.; An, S.; Zheng, B.; Zhang, H. Deep Learning for Metasurfaces and Metasurfaces for Deep Learning. In Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning; Campbell, S., Werner, D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 319–343. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Liu, Y.; Gao, Y.; Yan, Y.; Dong, Z.; Zhu, J. All-Dielectric SERS Metasurface with Strong Coupling Quasi-BIC Energized by Transformer-Based Deep Learning. Adv. Opt. Mater. 2024, 12, 2301697. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, N.; Cai, Y. Artificial Intelligence-Generated Terahertz Multi-Resonant Metasurfaces via Improved Transformer and CGAN Neural Networks. J. Light. Technol. 2024, 42, 1518–1525. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Jiang, J.; Sell, D.; Hoyer, S.; Hickey, J.; Yang, J.; Fan, J.A. Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano 2019, 13, 8872–8878. [Google Scholar] [CrossRef]
- Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights 2021, 1, 100004. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. IEEE Trans. Knowl. Data Eng. 2023, 35, 3313–3332. [Google Scholar] [CrossRef]
- Jafar-Zanjani, S.; Salary, M.M.; Huynh, D.; Elhamifar, E.; Mosallaei, H. TCO-Based Active Dielectric Metasurfaces Design by Conditional Generative Adversarial Networks. Adv. Theory Simul. 2021, 4, 2000196. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Du, L.; Huang, W. Inverse Design of Nanophotonic Devices Using Generative Adversarial Networks with the Sim-NN Model and Self-Attention Mechanism. Micromachines 2023, 14, 634. [Google Scholar] [CrossRef] [PubMed]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. In Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook; Rokach, L., Maimon, O., Shmueli, E., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 353–374. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Jin, X. A survey of autoencoder-based recommender systems. Front. Comput. Sci. 2020, 14, 430–450. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, B.; Luo, W.; Chen, F. Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review. Measurement 2022, 189, 110460. [Google Scholar] [CrossRef]
- Kong, W.; Chen, J.; Huang, Z.; Kuang, D. Bidirectional cascaded deep neural networks with a pretrained autoencoder for dielectric metasurfaces. Photonics Res. 2021, 9, 1607–1615. [Google Scholar] [CrossRef]
- Zhu, L.; Du, W.; Dong, L.; Wei, J. Optimized design for absorption metasurface based on autoencoder (AE) and BiLSTM-Attention-FCN-Net. Phys. Scr. 2024, 99, 036002. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Hu, P.; Hossain, S.; Liu, Z.; Ou, T.-H.; Ye, J.; Wu, W. End-to-End Diverse Metasurface Design and Evaluation Using an Invertible Neural Network. Nanomaterials 2023, 13, 2561. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D. Siamese Neural Networks: An Overview. In Artificial Neural Networks; Cartwright, H., Ed.; Springer: New York, NY, USA, 2021; pp. 73–94. [Google Scholar] [CrossRef]
- Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-learning with memory-augmented neural networks. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; Volume 48, pp. 1842–1850. [Google Scholar]
- Besold, T.R.; d’Avila Garcez, A.; Bader, S.; Bowman, H.; Domingos, P.; Hitzler, P.; Kühnberger, K.-U.; Lamb, L.C.; Lima, P.M.V.; de Penning, L.; et al. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation. In Neuro-Symbolic Artificial Intelligence: The State of the Art; Pascal Hitzler, K.S., Ed.; IOS Press: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Kwabena Patrick, M.; Felix Adekoya, A.; Abra Mighty, A.; Edward, B.Y. Capsule Networks—A survey. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 1295–1310. [Google Scholar] [CrossRef]
- Zhiyuan Liu, J.Z. Introduction to Graph Neural Networks; Springer Nature Switzerland AG: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kim, S.; Ji, W.; Deng, S.; Ma, Y.; Rackauckas, C. Stiff neural ordinary differential equations. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 093122. [Google Scholar] [CrossRef]
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commum. 2020, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Fu, S.; Wang, Y.; Xu, F. Intelligent Beamforming via Physics-Inspired Neural Networks on Programmable Metasurface. IEEE T. Antenn. Propag. 2022, 70, 4589–4599. [Google Scholar] [CrossRef]
- Ji, W.; Chang, J.; Xu, H.-X.; Gao, J.R.; Gröblacher, S.; Urbach, H.P.; Adam, A.J.L. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light Sci. Appl. 2023, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- Zhelyeznyakov, M.; Fröch, J.; Wirth-Singh, A.; Noh, J.; Rho, J.; Brunton, S.; Majumdar, A. Large area optimization of meta-lens via data-free machine learning. Commun. Eng. 2023, 2, 60. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Arbouet, A.; Girard, C.; Muskens, O.L. Deep learning in nano-photonics: Inverse design and beyond. Photonics Res. 2021, 9, B182–B200. [Google Scholar] [CrossRef]
- Dinh, L.; Krueger, D.; Bengio, Y. Nice: Non-linear independent components estimation. arXiv 2014, arXiv:1410.8516. [Google Scholar]
- Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using real nvp. arXiv 2016, arXiv:1605.08803. [Google Scholar]
- Fung, V.; Zhang, J.; Hu, G.; Ganesh, P.; Sumpter, B.G. Inverse design of two-dimensional materials with invertible neural networks. NJP Comput. Mater. 2021, 7, 200. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future. Arch. Comput. Methods Eng. 2022, 29, 5605–5633. [Google Scholar] [CrossRef]
- Xulin, W.; Zhenyuan, J.; Jianwei, M.; Dongxu, H.; Xiaoqian, Q.; Chuanheng, G.; Wei, L. Optimization of nanosecond laser processing for microgroove on TC4 surface by combining response surface method and genetic algorithm. Opt. Eng. 2022, 61, 086103. [Google Scholar] [CrossRef]
- Brûlé, Y.; Wiecha, P.; Cuche, A.; Paillard, V.; Colas des Francs, G. Magnetic and electric Purcell factor control through geometry optimization of high index dielectric nanostructures. Opt. Express 2022, 30, 20360–20372. [Google Scholar] [CrossRef]
- Ramírez-Ochoa, D.-D.; Pérez-Domínguez, L.A.; Martínez-Gómez, E.-A.; Luviano-Cruz, D. PSO, a Swarm Intelligence-Based Evolutionary Algorithm as a Decision-Making Strategy: A Review. Symmetry 2022, 14, 455. [Google Scholar] [CrossRef]
- Kien, N.T.; Hong, I.-P. Application of Metaheuristic Optimization Algorithm and 3D Printing Technique in 3D Bandpass Frequency Selective Structure. J. Electr. Eng. Technol. 2020, 15, 795–801. [Google Scholar] [CrossRef]
- Qamar, F.; Siddiqui, M.U.A.; Hindia, M.N.; Hassan, R.; Nguyen, Q.N. Issues, Challenges, and Research Trends in Spectrum Management: A Comprehensive Overview and New Vision for Designing 6G Networks. Electronics 2020, 9, 1416. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Brambila, S.G.; Gamboa, J.F.; Tapia, M.G.C. Multi-Objective Evolutionary Algorithms: Past, Present, and Future. In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems; Pardalos, P.M., Rasskazova, V., Vrahatis, M.N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 137–162. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Lamont, G.B.; Veldhuizen, D.A.V. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Miriyala, S.S.; Mitra, K. Multi-objective optimization of iron ore induration process using optimal neural networks. Mater. Manuf. Process. 2020, 35, 537–544. [Google Scholar] [CrossRef]
- Zhang, J.; Taflanidis, A.A. Multi-objective optimization for design under uncertainty problems through surrogate modeling in augmented input space. Struct. Multidiscip. Optim. 2019, 59, 351–372. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.; Jin, Y.; Qian, F. An adaptive Gaussian process based manifold transfer learning to expensive dynamic multi-objective optimization. Neurocomputing 2023, 538, 126212. [Google Scholar] [CrossRef]
- Zou, F.; Yen, G.G.; Tang, L.; Wang, C. A reinforcement learning approach for dynamic multi-objective optimization. Inf. Sci. 2021, 546, 815–834. [Google Scholar] [CrossRef]
- Kim, S.; Kim, I.; You, D. Multi-condition multi-objective optimization using deep reinforcement learning. J. Comput. Phys. 2022, 462, 111263. [Google Scholar] [CrossRef]
- Forrester, A.I.J.; Sóbester, A.; Keane, A.J. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; Wang, T.; Li, F. Genetic Algorithms to Automate the Design of Metasurfaces for Absorption Bandwidth Broadening. ACS Appl. Mater. Interfaces 2021, 13, 7792–7800. [Google Scholar] [CrossRef]
- Kuhn, L.; Repän, T.; Rockstuhl, C. Inverse design of core-shell particles with discrete material classes using neural networks. Sci. Rep. 2022, 12, 19019. [Google Scholar] [CrossRef] [PubMed]
- Pestourie, R.; Mroueh, Y.; Rackauckas, C.; Das, P.; Johnson, S.G. Physics-enhanced deep surrogates for partial differential equations. Nat. Mach. Intell. 2023, 5, 1458–1465. [Google Scholar] [CrossRef]
- Xu, W.; Hu, L.; Shao, K.; Liang, H.; He, T.; Dong, S.; Zhu, J.; Wei, Z.; Wang, Z.; Cheng, X. Design of arbitrary energy distribution beam splitters base on multilayer metagratings by a hybrid evolutionary particle swarm optimization. Opt. Express 2023, 31, 41339–41350. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pestourie, R.; Lin, Z.; Johnson, S.G.; Capasso, F. Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics 2022, 9, 2178–2192. [Google Scholar] [CrossRef]
- Wu, J.; Sigmund, O.; Groen, J.P. Topology optimization of multi-scale structures: A review. Struct. Multidiscip. Optim. 2021, 63, 1455–1480. [Google Scholar] [CrossRef]
- Givoli, D. A tutorial on the adjoint method for inverse problems. Comput. Methods Appl. Mech. Eng. 2021, 380, 113810. [Google Scholar] [CrossRef]
- Wang, N.; Yan, W.; Qu, Y.; Ma, S.; Li, S.Z.; Qiu, M. Intelligent designs in nanophotonics: From optimization towards inverse creation. PhotoniX 2021, 2, 22. [Google Scholar] [CrossRef]
- Xiong, B.; Liu, Y.; Xu, Y.; Deng, L.; Chen, C.-W.; Wang, J.-N.; Peng, R.; Lai, Y.; Liu, Y.; Wang, M. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 2023, 379, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Digani, J.; Hon, P.W.C.; Davoyan, A.R. Framework for Expediting Discovery of Optimal Solutions with Blackbox Algorithms in Non-Topology Photonic Inverse Design. ACS Photonics 2022, 9, 432–442. [Google Scholar] [CrossRef]
- Jin, Z.; Mei, S.; Chen, S.; Li, Y.; Zhang, C.; He, Y.; Yu, X.; Yu, C.; Yang, J.K.W.; Luk’yanchuk, B.; et al. Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. ACS Nano 2019, 13, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, R.; Allen, J.K.; Mistree, F. Managing computational complexity using surrogate models: A critical review. Res. Eng. Des. 2020, 31, 275–298. [Google Scholar] [CrossRef]
- Kiani, M.; Zolfaghari, M.; Kiani, J. Transfer learning for inverse design of tunable graphene-based meta-surfaces. J. Mater. Sci. 2024, 59, 3516–3530. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.; Fan, Y.; Mei, L.; Deng, W.; Lv, J.; Xu, Z. Design of All-Dielectric Metasurface-Based Subtractive Color Filter by Artificial Neural Network. Materials 2022, 15, 7008. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, D.; Rodrigues, S.P.; Lee, K.-T.; Cai, W. Generative Model for the Inverse Design of Metasurfaces. Nano Lett. 2018, 18, 6570–6576. [Google Scholar] [CrossRef]
- Kiani, M.; Kiani, J.; Zolfaghari, M. Conditional Generative Adversarial Networks for Inverse Design of Multifunctional Metasurfaces. Adv. Photonics Res. 2022, 3, 2200110. [Google Scholar] [CrossRef]
- Tanriover, I.; Lee, D.; Chen, W.; Aydin, K. Deep Generative Modeling and Inverse Design of Manufacturable Free-Form Dielectric Metasurfaces. ACS Photonics 2023, 10, 875–883. [Google Scholar] [CrossRef]
- Naseri, P.; Hum, S.V. A Generative Machine Learning-Based Approach for Inverse Design of Multilayer Metasurfaces. IEEE T. Antenn. Propag. 2021, 69, 5725–5739. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Wang, Y.; Li, J.; Jiang, X.; Yang, G.; Zhang, K.; Yuan, Y.; Fu, J.; Di, X.; et al. Multifunctional Metasurface Inverse Design Based on Ultra-Wideband Spectrum Prediction Neural Network. Adv. Opt. Mater. 2023, 12, 2302657. [Google Scholar] [CrossRef]
- Soumyashree, S.P.; Sushil, K.; Devdutt, T.; Ravi, S.H. Deep learning aids simultaneous structure–material design discovery: A case study on designing phase change material metasurfaces. J. Nanophotonics 2023, 17, 036006. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, Z.; Raju, L.; Kim, A.S.; Cai, W. Building Multifunctional Metasystems via Algorithmic Construction. ACS Nano 2021, 15, 2318–2326. [Google Scholar] [CrossRef]
- Kudyshev, Z.A.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 2020, 7, 021407. [Google Scholar] [CrossRef]
- Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures. ACS Photonics 2018, 5, 1365–1369. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Liu, D.; Wang, L.; Yu, Z. A Bidirectional Deep Neural Network for Accurate Silicon Color Design. Adv. Mat. 2019, 31, 1905467. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zang, X.; Chi, H.; Zhou, Y.; Zhu, Y.; Zhuang, S. Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions. Light Adv. Manuf. 2023, 4, 104–114. [Google Scholar] [CrossRef]
- Zhen, Z.; Qian, C.; Jia, Y.; Fan, Z.; Hao, R.; Cai, T.; Zheng, B.; Chen, H.; Li, E. Realizing transmitted metasurface cloak by a tandem neural network. Photonics Res. 2021, 9, B229–B235. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.; Wu, T.; Li, J.; Sun, Y.; Wang, Y.; Fan, H.; Wang, X.; Ye, H. Improved bidirectional networks for nanostructure color design. Opt. Commun. 2022, 520, 128419. [Google Scholar] [CrossRef]
- Du, X.; Zhou, C.; Bai, H.; Liu, X. Inverse design paradigm for fast and accurate prediction of a functional metasurface via deep convolutional neural networks. Opt. Mater. Express 2022, 12, 4104–4116. [Google Scholar] [CrossRef]
- Wang, T.; Sohoni, M.M.; Wright, L.G.; Stein, M.M.; Ma, S.-Y.; Onodera, T.; Anderson, M.G.; McMahon, P.L. Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics 2023, 17, 408–415. [Google Scholar] [CrossRef]
- Sui, X.; Wu, Q.; Liu, J.; Chen, Q.; Gu, G. A Review of Optical Neural Networks. IEEE Access 2020, 8, 70773–70783. [Google Scholar] [CrossRef]
- Caulfield, H.J.; Kinser, J.; Rogers, S.K. Optical neural networks. Proc. IEEE 1989, 77, 1573–1583. [Google Scholar] [CrossRef]
- Yu, F.T.S. Optical Neural Networks: Architecture, Design and Models. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 1993; Volume 32, pp. 61–144. [Google Scholar] [CrossRef]
- Denz, C. Optical Neural Networks; Vieweg+Teubner Verlag/Springer Fachmedien: Wiesbaden, Germany, 2013. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, M.; Jiang, X.D.; Thompson, J.; Cai, H.; Paesani, S.; Santagati, R.; Laing, A.; Zhang, Y.; Yung, M.H.; et al. An optical neural chip for implementing complex-valued neural network. Nat. Commum. 2021, 12, 457. [Google Scholar] [CrossRef]
- Huang, C.; Sorger, V.J.; Miscuglio, M.; Al-Qadasi, M.; Mukherjee, A.; Lampe, L.; Nichols, M.; Tait, A.N.; Ferreira de Lima, T.; Marquez, B.A.; et al. Prospects and applications of photonic neural networks. Adv. Phys. X 2022, 7, 1981155. [Google Scholar] [CrossRef]
- Stark, P.; Horst, F.; Dangel, R.; Weiss, J.; Offrein, B.J. Opportunities for integrated photonic neural networks. Nanophotonics 2020, 9, 4221–4232. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Q.; Luo, Z.J.; Hong, Q.R.; Xiao, Q.; Zhang, H.C.; Miao, L.; Yu, W.M.; Cheng, Q.; Li, L.; et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 2022, 5, 113–122. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; Ou, X.; Li, X.; Lai, J.; Liu, N.; Cheng, X.; Pan, A.; Duan, H. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 2022, 11, 158. [Google Scholar] [CrossRef]
- Luo, X.; Dong, S.; Wei, Z.; Wang, Z.; Hu, Y.; Duan, H.; Cheng, X. Full-Fourier-Component Tailorable Optical Neural Meta-Transformer. Laser Photonics Rev. 2023, 17, 2300272. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, M.; Yu, M.; Liu, X.; Zhu, L. Review of diffractive deep neural networks. J. Opt. Soc. Am. B 2023, 40, 2951–2961. [Google Scholar] [CrossRef]
- Matuszewski, M.; Prystupiuk, A.; Opala, A. Role of all-optical neural networks. Phys. Rev. Appl. 2024, 21, 014028. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Skidanov, R.V.; Butt, M.A. Exploring Types of Photonic Neural Networks for Imaging and Computing—A Review. Nanomaterials 2024, 14, 697. [Google Scholar] [CrossRef] [PubMed]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vučković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef]
- Barry, M.A.; Berthier, V.; Wilts, B.D.; Cambourieux, M.-C.; Bennet, P.; Pollès, R.; Teytaud, O.; Centeno, E.; Biais, N.; Moreau, A. Evolutionary algorithms converge towards evolved biological photonic structures. Sci. Rep. 2020, 10, 12024. [Google Scholar] [CrossRef] [PubMed]
- Turing, A.M. The chemical basis of morphogenesis. Bull. Math. Biol. 1990, 52, 153–197. [Google Scholar] [CrossRef]
- Fromenteze, T.; Yurduseven, O.; Uche, C.; Arnaud, E.; Smith, D.R.; Decroze, C. Morphogenetic metasurfaces: Unlocking the potential of turing patterns. Nat. Commum. 2023, 14, 6249. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, Z.; Obradov, M.; Jakšić, O. Brochosome-Inspired Metal-Containing Particles as Biomimetic Building Blocks for Nanoplasmonics: Conceptual Generalizations. Biomimetics 2021, 6, 69. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 2023, 56, 1513–1589. [Google Scholar] [CrossRef]
- Piggott, A.Y.; Petykiewicz, J.; Su, L.; Vučković, J. Fabrication-constrained nanophotonic inverse design. Sci. Rep. 2017, 7, 1786. [Google Scholar] [CrossRef] [PubMed]
- Loughlin, H.A.; Sudhir, V. Quantum noise and its evasion in feedback oscillators. Nat. Commum. 2023, 14, 7083. [Google Scholar] [CrossRef]
- Smolyaninov, I.I. Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric. Phys. Rev. Lett. 2005, 94, 057403. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, Z.; Ostojić, S.; Tanasković, D.; Matović, J. Vacuum fluctuations in optical metamaterials containing nonlinear dielectrics. Acta Phys. Pol. A 2009, 116, 628–630. [Google Scholar] [CrossRef]
- Yang, X.; Benelajla, M.; Carpenter, S.; Choy, J.T. Analysis of atomic magnetometry using metasurface optics for balanced polarimetry. Opt. Express 2023, 31, 13436–13446. [Google Scholar] [CrossRef]
- Ng, E.; Yanagimoto, R.; Jankowski, M.; Fejer, M.M.; Mabuchi, H. Optica Nonlinear Optics Topical Meeting 2023; Optica Publishing Group: Honolulu, HI, USA, 2023; p. W1A.6. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Klyuev, A.V.; Yakimov, A.V. 1/f Noise in GaAs nanoscale light-emitting structures. Phys. B Condens. Matter 2014, 440, 145–151. [Google Scholar] [CrossRef]
- Djurić, Z.; Jokić, I.; Frantlović, M.; Jakšić, O. Fluctuations of the number of particles and mass adsorbed on the sensor surface surrounded by a mixture of an arbitrary number of gases. Sensor. Actuat. B-Chem. 2007, 127, 625–631. [Google Scholar] [CrossRef]
- Jakšić, Z.; Maksimović, M.; Jakšić, O.; Vasiljević-Radović, D.; Djurić, Z.; Vujanić, A. Fabrication-induced disorder in structures for nanophotonics. Microelectron. Eng. 2006, 83, 1792–1797. [Google Scholar] [CrossRef]
- Patoux, A.; Agez, G.; Girard, C.; Paillard, V.; Wiecha, P.R.; Lecestre, A.; Carcenac, F.; Larrieu, G.; Arbouet, A. Challenges in nanofabrication for efficient optical metasurfaces. Sci. Rep. 2021, 11, 5620. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B. Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 1999, 11, 6621. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, B.; Zhao, Y.; Jiang, Y.; Chen, Y.-C.; Chen, P.; Jo, G.-B.; Liu, J.; Du, S. All-optical neural network with nonlinear activation functions. Optica 2019, 6, 1132–1137. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, B.; Zhang, X.; Leong, J.F.; Pan, J.; Hooda, S.; Zamburg, E.; Thean, A.V.-Y. Reconfigurable nonlinear photonic activation function for photonic neural network based on non-volatile opto-resistive RAM switch. Light Sci. Appl. 2022, 11, 288. [Google Scholar] [CrossRef]
- Luo, Y.; Mengu, D.; Yardimci, N.T.; Rivenson, Y.; Veli, M.; Jarrahi, M.; Ozcan, A. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl. 2019, 8, 112. [Google Scholar] [CrossRef]
- Veli, M.; Mengu, D.; Yardimci, N.T.; Luo, Y.; Li, J.; Rivenson, Y.; Jarrahi, M.; Ozcan, A. Terahertz pulse shaping using diffractive surfaces. Nat. Commum. 2021, 12, 37. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.; Zhou, T.; Wang, Y.; Xu, Z.; Yuan, X.; Fang, L. Photonic neuromorphic architecture for tens-of-task lifelong learning. Light Sci. Appl. 2024, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.I.; Brongersma, M.L.; Yao, J.; Chen, M.K.; Levy, U.; Tsai, D.P.; Zheludev, N.I.; Faraon, A.; Arbabi, A.; Yu, N.; et al. Roadmap for Optical Metasurfaces. ACS Photonics 2024, 11, 816–865. [Google Scholar] [CrossRef]
- Li, C.; Jang, J.; Badloe, T.; Yang, T.; Kim, J.; Kim, J.; Nguyen, M.; Maier, S.A.; Rho, J.; Ren, H.; et al. Arbitrarily structured quantum emission with a multifunctional metalens. eLight 2023, 3, 19. [Google Scholar] [CrossRef]
- Liu, T.; Chi, C.-H.; Ou, J.-Y.; Xu, J.; Chan, E.A.; MacDonald, K.F.; Zheludev, N.I. Picophotonic localization metrology beyond thermal fluctuations. Nat. Mater. 2023, 22, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huo, P.; Zhu, W.; Zhang, C.; Zhang, S.; Song, M.; Zhang, S.; Zhou, Q.; Chen, L.; Lezec, H.J.; et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commum. 2021, 12, 2230. [Google Scholar] [CrossRef]
- Wang, X.; Mirmoosa, M.S.; Asadchy, V.S.; Rockstuhl, C.; Fan, S.; Tretyakov, S.A. Metasurface-based realization of photonic time crystals. Science Advances 2023, 9, eadg7541. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, J.; Zhou, X.; Chen, C.; Guo, T.; Yan, Q.; Zhang, Y.; Wu, C. Metalens in Improving Imaging Quality: Advancements, Challenges, and Prospects for Future Display. Laser Photonics Rev. 2024, 18, 2300731. [Google Scholar] [CrossRef]
- Engelberg, J.; Wildes, T.; Zhou, C.; Mazurski, N.; Bar-David, J.; Kristensen, A.; Levy, U. How good is your metalens? Experimental verification of metalens performance criterion. Opt. Lett. 2020, 45, 3869–3872. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Huang, C.-F.; Tan, C.-C.; Liu, N.Y.-C.; Chu, C.H.; Huang, P.-S.; Wu, P.C.; Yiin, S.J.; Tanaka, T.; Weng, C.-J.; et al. High-Resolution Metalens Imaging with Sequential Artificial Intelligence Models. Nano Lett. 2023, 23, 11614–11620. [Google Scholar] [CrossRef]
- Li, Z.; Pestourie, R.; Park, J.-S.; Huang, Y.-W.; Johnson, S.G.; Capasso, F. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commum. 2022, 13, 2409. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Hong, J.-Y.; Hwang, S.; Moon, S.; Kang, H.; Jeon, S.; Kim, H.; Jeong, J.-H.; Lee, B. Metasurface eyepiece for augmented reality. Nat. Commum. 2018, 9, 4562. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, W.; Yamaguchi, T.; Geng, Z.; Tanaka, T.; Tsai, D.P.; Chen, M.K. Stereo Vision Meta-Lens-Assisted Driving Vision. ACS Photonics 2024. first online. [Google Scholar] [CrossRef]
- Chen, P.; Fang, B.; Li, J.; Wang, Z.; Cai, J.; Ke, L.; Huang, W.; Dong, Y.; Li, C.; Jing, X. Flexible control of multi-focus with geometric phase encoded metalens based on the complex digital addition principle. Opt. Lasers Eng. 2023, 161, 107332. [Google Scholar] [CrossRef]
- Tseng, M.L.; Semmlinger, M.; Zhang, M.; Arndt, C.; Huang, T.-T.; Yang, J.; Kuo, H.Y.; Su, V.-C.; Chen, M.K.; Chu, C.H.; et al. Vacuum ultraviolet nonlinear metalens. Sci. Adv. 2022, 8, eabn5644. [Google Scholar] [CrossRef] [PubMed]
- Abdollahramezani, S.; Hemmatyar, O.; Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 2020, 9, 4075–4095. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Lee, S.; Kim, I. Recent Advances in Metaphotonic Biosensors. Biosensors 2023, 13, 631. [Google Scholar] [CrossRef]
- John-Herpin, A.; Kavungal, D.; von Mücke, L.; Altug, H. Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules. Adv. Mat. 2021, 33, 2006054. [Google Scholar] [CrossRef]
- Li, G.; Wen, B.; Yang, J.; Wu, M.; Zhou, B.; Ye, X.; Tang, H.; Zhou, J.; Cai, J. Cost-Effective Nanophotonic Metasurfaces with Spatially Gradient Structures for Ultrasensitive Imaging-Based Refractometric Sensing. Small Methods 2024, 8, 2300873. [Google Scholar] [CrossRef] [PubMed]
- Arano-Martinez, J.A.; Martínez-González, C.L.; Salazar, M.I.; Torres-Torres, C. A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning. Biosensors 2022, 12, 710. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Cao, X.; Zhang, Y.; Wang, L.; Yao, H.; Yan, X.; Huang, C.; Wu, G.; Liu, W.; Hu, X.; et al. Graphene and gold nanoparticles integrated terahertz metasurface for improved sensor sensitivity. Phys. E 2024, 156, 115842. [Google Scholar] [CrossRef]
- Shrivastava, S.; Trung, T.Q.; Lee, N.-E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev. 2020, 49, 1812–1866. [Google Scholar] [CrossRef]
- Rahad, R.; Haque, M.A.; Mahadi, M.K.; Faruque, M.O.; Afrid, S.M.T.-S.; Mohsin, A.S.M.; Niaz, A.M.N.U.R.; Sagor, R.H. A polarization independent highly sensitive metasurface-based biosensor for lab-on-chip applications. Measurement 2024, 231, 114652. [Google Scholar] [CrossRef]
- Barulin, A.; Nguyen, D.D.; Kim, Y.; Ko, C.; Kim, I. Metasurfaces for Quantitative Biosciences of Molecules, Cells, and Tissues: Sensing and Diagnostics. ACS Photonics 2024, 11, 904–916. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, H.; Wu, B.; Zhu, T.; Ruan, Z. Topologically protected generation of spatiotemporal optical vortices with nonlocal spatial mirror symmetry breaking metasurface. Phys. Rev. B 2023, 108, 104106. [Google Scholar] [CrossRef]
- Tang, D.; Wang, C.; Zhao, Z.; Wang, Y.; Pu, M.; Li, X.; Gao, P.; Luo, X. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev. 2015, 9, 713–719. [Google Scholar] [CrossRef]
- Cheng, K.; Hu, Z.; Wang, Y.; Ma, J.; Wang, J. High-performance terahertz vortex beam generator based on square-split-ring metasurfaces. Opt. Lett. 2020, 45, 6054–6057. [Google Scholar] [CrossRef]
- Silva, A.; Monticone, F.; Castaldi, G.; Galdi, V.; Alù, A.; Engheta, N. Performing mathematical operations with metamaterials. Science 2014, 343, 160–163. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; Shou, Y.; Luo, H. Optical analog computing enabled broadband structured light. Opt. Lett. 2023, 48, 2014–2017. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wen, S.; Luo, H. Metasurface-Based Optical Analog Computing: From Fundamentals to Applications. Adv. Devices Instrum. 2022, 2022, 0002. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Ser, J.D.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
Metasurface Material | Role | Examples, Advantages and Disadvantages |
---|---|---|
Conductive parts of plasmonic structures (Drude-type free electron conductors) | Basic material for all plasmonic metasurfaces | Noble metals, aluminum, different alloys including alkali–noble intermetallics, transparent conductive oxides, refractory plasmonic materials, highly doped semiconductors, 2D materials like graphene or MXenes Advantage: extremely high field localizations Disadvantage: high losses |
High-refractive index dielectric | Basic material for all all-dielectric and plasmonic metasurfaces | Lossless dielectrics like polymers, copolymers, ceramics; ultrathin semiconductors Advantages: near-zero losses, localizations of EM field Disadvantage: weaker localizations than with conductors |
Special functional materials | Materials introducing additional multifunctionalities to metasurfaces, e.g., nonlinear optical behavior, quantum properties, tunability in real time, etc. | Nonlinear optical materials, quantum structures, phase-change materials, LCD and many more Advantage: additional multifunctionalities Disadvantage: complex operational requirements depending on function (very high fields for nonlinear, cryogenic temperatures for quantum materials, etc.) |
Meta-Atom Distribution | Summary of Description |
---|---|
Periodic Metasurfaces | The distribution forms a regular pattern, similar to those in natural crystals but in 2D form. Meta-atoms are arranged in unit cells that can be square, rectangular, triangular, hexagonal, etc. [121]. Various orders of diffracted light are possible. Advantages: Easy to design due to pattern simplicity. Batch fabrication compatible with standard planar technologies. Useful for various applications, from beam shaping and steering to 2D lensing. Disadvantage: Not suitable for any applications where non-periodic distribution of meta-atoms is needed. |
Aperiodic Metasurfaces | Regular 2D patterns are still present, but the distances and relative locations among them are determined in accordance with various aperiodic sequences and no unit cell can be defined. Examples include Cantor sequences along one or both axes, Thue–Morse, Fibonacci, etc. [122]. Advantage: Almost arbitrary wavefront modulation. Disadvantage: Technological difficulties to produce. |
Quasiperiodic Metasurfaces | The pattern of the distribution of meta-atoms in quasi-periodic metasurfaces [123] is ordered but not periodic and instead it follows that encountered in quasi-crystals (e.g., distributions like in the famous Penrose tiling [124]—actually, Penrose-distributed meta-atoms on metasurfaces were reported in [125]; a vast number of different geometries, including, e.g., dendritic nanostructures [126] were also used). Advantages: Can create unique diffraction effects and generate complex light fields resulting in multifunctional metasurfaces, superabsorbers, etc. Disadvantage: Complex fabrication for larger areas. |
Gradient Metasurfaces (Metagratings) | The distribution of meta-atoms or of their dimensions is spatially varying, thus ensuring a position-dependent optical response. Other material parameters can be graded as well (e.g., gradient refractive index—GRIN) [127]. Advantage: Enables reaching a gradient in the phase, amplitude or polarization of the optical signal, thus, e.g., facilitating beam steering and focusing [128,129]. Disadvantage: Complex fabrication for larger areas. |
Random Metasurfaces | Meta-atoms are randomly distributed here. This randomness may range from a slight disorder to quasi-randomly generated distributions to fully random ones. Advantages: Random metasurfaces can find different applications, e.g., in light scattering enhancement, speckle reduction and improved light absorption (of importance for photodetection including solar cells and generally superabsorbers [130]). Disadvantage: Complex fabrication for larger areas, problems with repeatability. |
Dynamically Reconfigurable Metasurfaces | It is possible to use external stimuli to tailor the properties of these metasurfaces. They represent almost a class of their own and play an important role in AI–metasurface synergy. Various stimuli can be used to reconfigure them. An example is elastomer-based metasurfaces where the distribution of meta-atoms is achieved by applying external mechanical force in an arbitrary manner [131]. Advantage: Ensures the production of tunable structures of interest for applications where dynamic changes are essential. Disadvantage: Complex fabrication, mostly related to integrating tuning material and bringing stimulus to the desired position. |
Cross-Section Profile | Summary of Description |
---|---|
Fully plasmonic cross-section | These metasurfaces are composed in their entirety of plasmonic conductors (in a majority of cases noble metals but alternative materials include those quoted in Table 1). The full plasmonic layer metastructures include extraordinary optical transmission (EOT) sheets [132] which may be topologically continuous [133]. These structures may be single- or multilayer and one or more plasmonic materials may be alternating between the layers. Advantage: Extremely high field enhancements and localizations, convenient for, e.g., nonlinear optical materials. Disadvantage: Very high absorption losses, hindering or fully obstructing some applications. |
All-dielectric cross-section | These metasurfaces are composed in their entirety of dielectrics with a high refractive index that are either lossless or extremely low-loss at optical frequencies [128,134]. May be single- or multilayer. Advantage: Low losses. Disadvantage: Much lower field enhancements and localizations than with plasmonic materials. |
Hybrid plasmonic conductor–dielectric metasurfaces | These metasurfaces combine in a single structure plasmonic conductors with dielectrics [135]. This ensures the simultaneous use of plasmonic and dielectric resonances. In this manner, decreased losses are obtained in parallel with strong field localizations. A large part of the existing plasmonic metasurfaces are actually built with such a geometry. Advantage: A controllable manner to decrease losses and simultaneously obtain strong field localizations, convenient for many applications (e.g., negative refractive index metasurfaces, superabsorbers). Disadvantages: Complex control of properties; many such structures nevertheless have high losses. |
Metal–insulator–metal (MIM) sandwich structures | The cross-section of this type of hybrid cross-section metasurfaces consists of a top and bottom metal layer with a dielectric spacer between them [136]. The top and bottom layer may consist of conductive nanoantennas/meta-atoms or nano-apertures, like in, e.g., superabsorbers [74,137], or may be continuous. The spacer may be continuous or riddled with apertures. The usual abbreviation “MIM” is actually misleading, since any plasmonic conductor can be used as the “M” part, not only metals. Advantage: Convenient for introducing different signal modes and for high-performance optical waveguides. Disadvantage: Losses in the plasmonic parts. |
Insulator–metal–insulator (IMI) sandwich structures | A reversal of the above structure, since two dielectric parts are on the outside and a conductive layer is in the middle. Advantage: Described as one of the simplest and nearest to ideal plasmonic waveguides [138]. Disadvantage: Its waveguiding properties lag behind those of MIMs. |
General multilayer metasurfaces | Multilayer metasurfaces are obtained by stacking a larger number of subwavelength layers. Each of them may have a different geometry and composition. Advantages: Successive processing of optical signals can be obtained. This layout offers a higher degree of design freedom and is thus often used for metaphotonics-based AI [110]. Besides this, it ensures functionalities like broadband operation. Complex frequency dispersions are obtainable by a single structure, including those allowing for negative group velocity modes with simple free space coupling without a need for couplers. Disadvantage: Rather complex structures. |
3D Metasurfaces | The term 3D metasurfaces at first glance appears to be contradictio in adjecto since basically it could be understood as a 2D object having three dimensions. Actually, these are flat metastructures organized to form a hollow and layer-built 3D, like a house of cards. One of the methods to obtain them is origami deformation or “bulking” [139]. Advantage: Sophisticated functionalities are obtainable like symmetry breaking to achieve chirality switching [139] or for fabrication of metasurface-based cloaking devices [140]. Disadvantage: Not actually 2D metasurfaces but only containing them as their main building blocks. |
Meta-Atom Type | Summary of Description |
---|---|
Rod-shaped meta-atoms | The cross-section of these meta-atoms may vary; it can be cylindrical, hemicylindrical (in both cases, the base shape may be either circular, elliptical or arbitrary curvilinear), rectangular, triangular, etc. Typically, they lie in the metasurface plane. The rod length may also vary and thus the aspect ratio too. Advantages: They can support electric and magnetic resonance and be used to control light polarization and phase. Simpler control of in-plane coupling; good directionality. Disadvantage: Low interaction with out-of-plane components. |
Pillar shape | Actually a rod shape, but either assuming its perpendicular position with respect to the planar surface or tilted under some angle; both represent an extension beyond planar geometries. The same comment regarding their base is valid as for the rod form but other forms can also be used, like X-shaped base, Y or V-shaped, etc. Advantages: Supporting electric and magnetic resonances and controlling light polarization and phase. Disadvantages: Increased fabrication complexity; requires additional fab steps to control integration with the metasurface. |
Spherical shape | Obtained by depositing nanoscale spherules on the planar surface that may adhere with only a small part to it or be more or less embedded (up to full immersion, an example for which would be plasmonic spheres embedded into a dielectric metasurface body). Advantage: Excellent isotropic properties, thus useful for omnidirectional applications. Disadvantage: Rather poor anisotropic properties and directionality. |
Ellipsoids | A variation of the above type but with ellipsoids instead of spherules. Advantage: Better polarization control than that of spherical meta-atoms. Disadvantage: More complex to fabricate than spherical meta-atoms. |
Disk shape | Most often with a circular or elliptical base, its diameter being much larger than its height. Advantage: Simple to fabricate by planar technologies and thus relatively low-cost, very popular for many metasurface applications. Disadvantage: Rather poor performance in controlling complex optical signals having components in 3D. |
Other 3D forms | For instance, pyramids, nano-cubes, different polyhedra and actually any existing nanoparticle shape including the highly complex ones; they may protrude from the plane or be partially or fully embedded into the metasurface, their orientation providing directive or omnidirectional properties. Advantage: In many cases useful for complex optical interactions and multi-directional functions. Disadvantage: Fabrication may be complex and costly, although it may be alleviated or avoided if self-assembled nanoparticles are used. |
Asymmetric meta-atoms | Planar forms like X, Y and V with unequal sides; introduce strong anisotropy. Advantages: Simple planar fabrication; convenient for obtaining anisotropic response, applicable for fine polarization conversion and control; tailorable directionality; may be useful for asymmetric scattering of light, control of circular dichroism, etc. Disadvantage: Can be difficult to optimize for certain functionalities. |
Complex shapes | Stars, crosses, various G-shapes, L-shapes, spirals with circular, rectangular, triangular forms, U-shapes, T-shapes, twisted crosses and actually any imaginable and fabricable planar nano-geometry. Advantages: Readily fabricated by planar technologies; highly tailorable and flexible design and thus applicable for a wide range of different wave manipulations, offering extensive design flexibility; some of them are convenient for chiral response. Disadvantages: Can be complex for design and simulations; may have poor scalability. |
Split-ring resonators | Single or multiple planar rings with single or multiple splits in each of their rings; historically, the earliest form that ensured experimental implementation of negative effective permeability. Advantages: Useful for applications requiring resonant response; can be helpful to obtain magnetic responses at optical frequencies; assisting to achieve negative magnetic permeability at non-optical lower frequencies (e.g., microwave). Disadvantage: Resonant response makes them poorly usable for broadband applications. |
Complementary structures | Apertures shaped in the form of any of the meta-atom geometries mentioned in this table, function according to Babinet principle. Advantage: Through inverting the field distribution (optical to electrical and electrical to optical) of their solid counterparts complement and enhance the optical field distribution control. Disadvantage: Complex design and fabrication, complex tuning to desired frequency dispersion. |
Fishnet structures | Ordered arrays of nanoholes that are circular or rectangular in a majority of cases, although other aperture geometries sometimes appear. Complementary to solid cylindrical structures. Advantages: Have advanced optical properties that made fishnet the principal geometry of extraordinary optical transmission arrays and of fishnet metamaterial (the latter being historically the first structures to reach negative refractive index in the visible spectral range); generally useful for the enhancement of different optical properties. Disadvantage: Relatively complex fabrication. |
Chiral structures | Twisted or helical rods, planar spirals or helices, asymmetric split rings and generally any asymmetric meta-atoms. Advantages: Such structures enable the metasurface to make a distinction between the two kinds of circularly polarized light, the left-handed (LH) and the right-handed (RH) ones; can modify light polarization in manners unattainable by non-chiral meta-atoms, ensuring, e.g., light polarization rotation, conversion between linear and circular polarization, control over circular dichroism, enantioselective sensing and general chiroptical applications. Disadvantage: Relatively complex structures requiring highly accurate geometry control. |
Arbitrary (freeform) shapes | Typically implemented in planar geometry lying within the metasurface plane. The shapes can have literally any form, although after being optimized at least some of them tend to assume geometrical forms encountered in living organisms. Advantage: Ensure maximum design freedom when performing AI optimization of meta-atom forms for targeted applications tailored for complex and very specific optical requirements. Disadvantages: Design may be computationally demanding, especially for complex shapes. Usually require AI optimization. Fabrication can also be challenging. |
Metasurface Functionality | Summary of Properties |
---|---|
Phase control | Crucial for the basic metasurface functions; by phase modification from 0 to 2π one ensures complete control over wavefront; the main approaches are geometric phase control (the Pancharatnam–Berry type) [147], Huygens’ metasurfaces [148] and phase shift in gradient metasurfaces [129], as well as resonant phase shift, transmission and reflection (scattering parameters) phase control and polarization state phase control. Advantages: Accurate and complete light wavefront control; crucial for beam shaping and steering, meta-holography and a majority of other applications. Disadvantage: Challenging design and fabrication due to mandatory high precision. |
Amplitude control | Control over the value of scattering parameters (reflectance, transmittance) and absorptance/emittance. Advantages: Ensures adjustment of light intensity distribution; convenient for numerous uses in imaging and spatial light modulation. Disadvantage: The system efficiency may be decreased due to optical losses. |
Polarization control | Creation of planar polarizers, polarization converters, wave plates, etc. Advantages: Enables light polarization conversion and general manipulation with it; useful for numerous practical applications. Disadvantage: Operating conditions and the system geometry may limit the efficiency of control. |
Dispersion control | Control of pulse shaping and chromatic aberration correction. Advantages: Managing the manner that light at different wavelengths propagates through the system; convenient for broadband optical systems; very useful for imaging and flat lenses. Disadvantages: Complex design and fabrication. |
Direction control | Control of light beam direction without moving parts; may be regarded as a subset of phase control. Advantages: Able to steer beams dynamically; useful for various applications like LIDAR and optical communications. Disadvantage: Challenging steering precision control. |
Frequency control | Control over upconversion, downconversion and frequency mixing, e.g., through the use of nonlinear optical materials and ultra-strong light localization immanent to plasmonic metasurfaces. Advantages: Enables tuning the operating frequency; useful for different spectrum-related applications like dynamic spectral filtering. Disadvantages: External control, if any, makes the design and fabrication more challenging; high fields are often necessary; increased risk of unreliable operation and failure. |
Quantum properties control | Control of light–matter interplay at the quantum level with the final goal of incorporating quantum information functionalities, including quantum computing and quantum cryptography. Advantage: Ability to manipulate quantum states of light, thus applicable for quantum computing, quantum cryptography. Disadvantages: A need for cryogenic operating temperatures; complex fabrication. |
Multiple parameter control | Simultaneous control over two or more of the above-listed functional parameters in a single highly compact system. Advantages: Useful for multiplexing applications, fine tuning of optical parameters and extending the functionality ranges. Disadvantage: The system has to be much more complex than a single-parameter one; design and fabrication are more complex; the need to adjust several parameters at the same time often necessitates performance compromises. |
Metasurface Type | Summary of Properties |
---|---|
Nonlinear metasurfaces | Metasurfaces with built-in nonlinear optical materials, offering nonlinear functionalities. Advantages: Introducing nonlinear optics functionalities like frequency control; ensuring a wealth of new semiconductor-like properties of optical materials. Disadvantage: High field intensities needed. |
Topological metasurfaces | Metasurfaces mimicking the topology of condensed matter physics systems including topological insulators and edge modes. Advantage: Topological properties ensure high quality light manipulation able to avoid defects and disorder in metasurface material. Disadvantage: Complex fabrication procedures. |
Quantum metasurfaces | Metasurfaces with built-in quantum mechanical materials, offering quantum functionalities. Advantage: Ability to manipulate quantum states of light, thus applicable for quantum computing, quantum cryptography. Disadvantage: Needs cryogenic operating temperatures; complex fabrication with low tolerance to inaccuracies. |
Tunable metasurfaces | Metasurfaces whose optical parameters can be adjusted to desired values using external stimuli. Advantages: Enable dynamic control of their optical properties by a control signal, thus adaptable to different changeable environments and varying operating conditions; convenient for many advanced applications. Disadvantages: The integration of tuning mechanisms and their external control increases the complexity of the system; the speed of the tuning mechanisms often can be inadequate, as well as their reliability. |
Digital coding metasurfaces | Metasurfaces designed and applied based on the principles of digital signal processing. Advantage: Programmable control over optical waves, useful for a wide range of applications, including optical computing, communications, LIDAR, etc. Disadvantage: Complex design and complex optimization; depending on mechanisms used, the efficiency and operation speed may be low. |
Intelligent metasurfaces | Tunable metasurfaces that ensure wave–information–matter interaction, ensuring autonomous response. Advantages: Integration of sensing and computing abilities, highly adaptable, usable in adaptability in smart applications. Disadvantages: Complex design and fabrication; power consumption may be high. |
Neuromorphic metasurfaces | Intelligent metasurfaces based on the principles of neuromorphic computing, their artificial neurons mimicking human ones to a certain degree. Advantages: Applicability in novel generation of optical computing, high speed. Disadvantages: Very complex design and fabrication; currently still under development and thus with significant functional inadequacies; problems with scalability and system integration. |
Learning Name | Approach | Label | Main Application Subgroups |
---|---|---|---|
Supervised | Task driven | Labeled | Classification, regression |
Unsupervised | Data driven | Unlabeled | Associations, clustering |
Semi-supervised | Task and data driven | Labeled and unlabeled | Classification, clustering |
Reinforcement | Environment driven | N.A. (reward-based) | Control, classification |
Classification | Regression | Clustering | Association | Dimensionality Reduction | Reinforcement |
---|---|---|---|---|---|
(Types: Binary, Multiclass, Multi-label) | (May overlap with classification methods) | (Partitioning, Constraint-, Density-, Grid-, Model-based) | (Discovering relationships of interest) | (Includes feature learning) | (Trial and error learning in an interactive environment) |
Adaptive boosting | Least absolute shrinkage | K-means clustering | AIS association rule | Principal component analysis | Monte Carlo methods |
Naive Bayes | Linear regression | Gaussian mixture | SETM | Analysis of variance | Quality learning (Q-Learning) |
Linear discriminant analysis | Multiple linear regression | Mean-shift clustering | A priori | Chi square | State–Action– Reward–State– Action (SARSA) |
Logistic regression | Polynomial regression | Agglomerative hierarchical clustering | Equivalence Class Clustering and bottom- up Lattice Traversal | t-Distributed Stochastic Neighbor Embedding | Temporal Difference (TD) Learning |
K-nearest neighbors | Selection operator regression | Density-based spatial clustering of Applications with Noise | Frequent-pattern growth | Model-based selection | |
Decision tree | ABC-Rule Miner | Pearson correlation | |||
Random forest | Frequent pattern growth | Recursive feature elimination | |||
Gradient-boosted trees | Principal component analysis | ||||
Extreme gradient boosting | Variance threshold | ||||
Rule-based classification | |||||
Stochastic gradient descent |
Supervised | Unsupervised (Generative) | Semi-Supervised | Reinforcement |
---|---|---|---|
Convolutional Neural Network (CNN) | Generative Adversarial Network (GAN) | Deep Transfer Learning (DTL) | Deep Reinforcement Learning (DRL) |
Recurrent Neural Network (RNN) | Autoencoder | Hybrid Deep Neural Network | Generalized Reinforcement Learning-based Deep Neural Network |
Deep Belief Network (DBN) | Variational Autoencoder (VAE) | Graph stochastic neural network (GSNN) | Policy Gradient Networks |
Physics-Informed Neural Network (PINN) | Self-organizing Map (SOM) (Kohonen Map) | Actor–Critic Networks | |
Transformer Neural Network (TNN) | Restricted Boltzmann machine (RBM) | Soft Actor–Critic (SAC) | |
Multilayer Perceptron (MLP) | Deep Deterministic Policy Gradient (DDPG) | ||
Long Short-Term Memory Network (LSTM) | Twin Delayed DDPG (TD3) | ||
Radial Basis Function (RBF) | |||
Gated Recurrent Unit (GRU) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakšić, Z. Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances. Photonics 2024, 11, 442. https://doi.org/10.3390/photonics11050442
Jakšić Z. Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances. Photonics. 2024; 11(5):442. https://doi.org/10.3390/photonics11050442
Chicago/Turabian StyleJakšić, Zoran. 2024. "Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances" Photonics 11, no. 5: 442. https://doi.org/10.3390/photonics11050442
APA StyleJakšić, Z. (2024). Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances. Photonics, 11(5), 442. https://doi.org/10.3390/photonics11050442