Simulation of a Pulsed Metastable Helium Lidar
Abstract
:1. Introduction
2. Fundamental Principles
3. System Structure
3.1. Laser
3.2. Filter
3.3. Detector
4. Simulations and Error Analysis
4.1. Lidar Equation and Calibration
4.2. Saturation Effect
4.3. Simulation
4.4. Error Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christensen, A.; Patterson, T.; Tinsley, B. Observations and computations of twilight helium 10,830-Angstrom emission. J. Geophys. Res. 1971, 76, 1764–1777. [Google Scholar] [CrossRef]
- Tinsley, B.; Christensen, A. Twilight helium 10,830-Å calculations and observations. J. Geophys. Res. 1976, 81, 1253–1263. [Google Scholar] [CrossRef]
- Kerr, R.; Noto, J.; Lancaster, R.; Franco, M.; Rudy, R.; Williams, R.; Hecht, J. Fabry Perot observations of helium 10830 Å emission at Millstone Hill. Geophys. Res. Lett. 1996, 23, 3239–3242. [Google Scholar] [CrossRef]
- Young, A.T. Rayleigh scattering. Phys. Today 1982, 35, 42–48. [Google Scholar] [CrossRef]
- She, C.-Y. Spectral structure of laser light scattering revisited: Bandwidths of nonresonant scattering lidars. Appl. Opt. 2001, 40, 4875–4884. [Google Scholar] [CrossRef] [PubMed]
- Gerding, M.; Wing, R.; Franco-Diaz, E.; Baumgarten, G.; Fiedler, J.; Köpnick, T.; Ostermann, R. The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn/Germany—Part 1: Technical specifications and capabilities. EGUsphere 2023, 2023, 1–29. [Google Scholar] [CrossRef]
- Baumgarten, G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos. Meas. Tech. 2010, 3, 1509–1518. [Google Scholar] [CrossRef]
- Khaykin, S.M.; Hauchecorne, A.; Wing, R.; Keckhut, P.; Godin-Beekmann, S.; Porteneuve, J.; Mariscal, J.-F.; Schmitt, J. Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: Performance evaluation and observations. Atmos. Meas. Tech. 2020, 13, 1501–1516. [Google Scholar] [CrossRef]
- Bowman, M.R.; Gibson, A.J.; Sandford, M.C.W. Atmospheric Sodium measured by a Tuned Laser Radar. Nature 1969, 221, 456–457. [Google Scholar] [CrossRef]
- Pfrommer, T.; Hickson, P. High-resolution lidar observations of mesospheric sodium and implications for adaptive optics. JOSA A 2010, 27, A97–A105. [Google Scholar] [CrossRef]
- Granier, C.; Jegou, J.P.; Megie, G. Iron atoms and metallic species in the Earth’s upper atmosphere. Geophys. Res. Lett. 1989, 16, 243–246. [Google Scholar] [CrossRef]
- Collins, R.; Li, J.; Wiliams, B.; Kaifler, B.; Thorsen, D. All-Solid State Iron Resonance Lidar for Measurement of Temperature and Winds in the Upper Mesosphere and Lower Thermosphere. In International Laser Radar Conference; Springer International Publishing: Cham, Switzerland, 2022; pp. 189–195. [Google Scholar]
- Felix, F.; Keenliside, W.; Kent, G.; Sandford, M.C.W. Laser Radar Observations of Atmospheric Potassium. Nature 1973, 246, 345–346. [Google Scholar] [CrossRef]
- Feng, W.; Höffner, J.; Marsh, D.; Chipperfield, M.; Dawkins, E.; Viehl, T.; Plane, J. Diurnal variation of the potassium layer in the upper atmosphere. Geophys. Res. Lett. 2015, 42, 3619–3626. [Google Scholar] [CrossRef] [PubMed]
- Gerrard, A.J.; Kane, T.J.; Meisel, D.D.; Thayer, J.P.; Kerr, R.B. Investigation of a resonance lidar for measurement of thermospheric metastable helium. J. Atmos. Sol. -Terr. Phys. 1997, 59, 2023–2035. [Google Scholar] [CrossRef]
- Carlson, C.G.; Dragic, P.D.; Price, R.K.; Coleman, J.; Swenson, G.R. A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 451–461. [Google Scholar] [CrossRef]
- Mangognia, A.D. Helium Resonance Fluorescence LiDAR; University of Illinois at Urbana-Champaign: Champaign County, IL, USA, 2015. [Google Scholar]
- Kaifler, B.; Geach, C.; Büdenbender, H.C.; Mezger, A.; Rapp, M. Measurements of metastable helium in Earth’s atmosphere by resonance lidar. Nat. Commun. 2022, 13, 6042. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Sun, D.; Xue, X.; Zheng, J.; Lan, J.; Li, Z.; Zhang, N.; Dou, X. Parameter design and performance analysis of lidar system for thermospheric helium. Chin. J. Lasers 2017, 44, 910001. [Google Scholar]
- Pan, T.; Sun, D.; Zhao, R.; Lan, J.; Han, Y.; Chen, T.; Xue, X.; Tang, L. Parameter design and performance analysis of bistatic helium lidar system. Acta Photonica Sin. 2019, 48, 1001001. [Google Scholar]
- Bishop, J.; Link, R. Metastable He 1083 nm intensities in the twilight: A reconsideration. Geophys. Res. Lett. 1993, 20, 1027–1030. [Google Scholar] [CrossRef]
- Bishop, J.; Link, R. He (23 S) densities in the upper thermosphere: Updates in modeling capabilities and comparisons with midlatitude observations. J. Geophys. Res. Space Phys. 1999, 104, 17157–17172. [Google Scholar] [CrossRef]
- Hodgman, S.S.; Dall, R.G.; Byron, L.J.; Baldwin, K.G.H.; Buckman, S.J.; Truscott, A.G. Metastable Helium: A New Determination of the Longest Atomic Excited-State Lifetime. Phys. Rev. Lett. 2009, 103, 053002. [Google Scholar] [CrossRef] [PubMed]
- Shefov, N.N. Helium in the upper atmosphere. Planet. Space Sci. 1963, 10, 73–77. [Google Scholar] [CrossRef]
- Fujii, T.; Fukuchi, T. Laser Remote Sensing; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Waldrop, L.; Kerr, R.; Gonzalez, S.; Sulzer, M.; Noto, J.; Kamalabadi, F. Generation of metastable helium and the 1083 nm emission in the upper thermosphere. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Bhuiyan, A.; Richardson, D.; Naik, S.; Lucht, R. Development of an optical parametric generator with pulsed dye amplification for high-resolution laser spectroscopy. Appl. Phys. B 2009, 94, 559–567. [Google Scholar] [CrossRef]
- Pan, T.; Chen, T.; Sun, D.; Han, Y.; Xue, X.; Zhao, R.; Lan, J. Metastable helium Faraday filter for helium lidar to measure the density of the thermosphere. Opt. Express 2021, 29, 4431–4441. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, B.; Zhang, L.; Ge, R.; Xu, R.; Wu, Y.; Tu, X.; Jia, X.; Pan, D.; Kang, L.; et al. Sixteen-Pixel NbN Nanowire Single Photon Detector Coupled With 300-μm Fiber. IEEE Photonics J. 2020, 12, 2954938. [Google Scholar] [CrossRef]
- Zhang, B.; Guan, Y.-Q.; Xia, L.; Dong, D.; Chen, Q.; Xu, C.; Wu, C.; Huang, H.; Zhang, L.; Kang, L.; et al. An all-day lidar for detecting soft targets over 100 km based on superconducting nanowire single-photon detectors. Supercond. Sci. Technol. 2021, 34, 34005. [Google Scholar] [CrossRef]
- Welsh, B.M.; Gardner, C.S. Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars. Appl. Opt. 1989, 28, 4141–4153. [Google Scholar] [CrossRef]
- Milonni, P.W.; Fugate, R.Q.; Telle, J.M. Analysis of measured photon returns from sodium beacons. J. Opt. Soc. Am. A 1998, 15, 217–233. [Google Scholar] [CrossRef]
- Von der Gathen, P. Saturation effects in Na lidar temperature measurements. J. Geophys. Res. Space Phys. 1991, 96, 3679–3690. [Google Scholar] [CrossRef]
- Milonni, P.W.; Fearn, H.; Telle, J.M.; Fugate, R.Q. Theory of continuous-wave excitation of the sodium beacon. J. Opt. Soc. Am. A 1999, 16, 2555–2566. [Google Scholar] [CrossRef]
Parameters | Value | |
---|---|---|
Laser | Power | 0.6 W |
Repetition | 50 Hz | |
Bandwidth | 300 MHz | |
Central wavelength | 1083.03 nm | |
Pulse duration | 10 ns | |
Receiving optics | Telescope area | 3.142 m2 |
FOV | 44 μrad | |
Interference filter | Bandwidth | 0.5 nm |
Peak transmittance | 0.99 | |
FPI | Bandwidth | 4.6 GHz |
FSR | 138 Ghz | |
Peak transmittance | 0.5 | |
SNSPD | Dark counts | 800 cps |
Quantum efficiency at 1083 nm | 30% | |
Others | Integration time | 1 h |
Range resolution | 50 km | |
One-way atmosphere transmittance | 0.85 * |
Error Factor | Value | Relative Error of Density |
---|---|---|
Laser central wavelength | 1083.03 nm ± 0.08 pm | 0.3% |
Temperature | 1125 K ± 375 K | 6% |
Wind speed | 0 m/s ± 100 m/s | 1% |
Shot noise | 550 km altitude in winter | 3.6% |
350 km altitude in summer | 103.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Han, Y.; Zhao, R.; Chen, T.; Xue, X.; Sun, D.; Zhou, H.; Liu, Z.; Liu, Y. Simulation of a Pulsed Metastable Helium Lidar. Photonics 2024, 11, 465. https://doi.org/10.3390/photonics11050465
Lan J, Han Y, Zhao R, Chen T, Xue X, Sun D, Zhou H, Liu Z, Liu Y. Simulation of a Pulsed Metastable Helium Lidar. Photonics. 2024; 11(5):465. https://doi.org/10.3390/photonics11050465
Chicago/Turabian StyleLan, Jiaxin, Yuli Han, Ruocan Zhao, Tingdi Chen, Xianghui Xue, Dongsong Sun, Hang Zhou, Zhenwei Liu, and Yingyu Liu. 2024. "Simulation of a Pulsed Metastable Helium Lidar" Photonics 11, no. 5: 465. https://doi.org/10.3390/photonics11050465
APA StyleLan, J., Han, Y., Zhao, R., Chen, T., Xue, X., Sun, D., Zhou, H., Liu, Z., & Liu, Y. (2024). Simulation of a Pulsed Metastable Helium Lidar. Photonics, 11(5), 465. https://doi.org/10.3390/photonics11050465