Compact Low Loss Ribbed Asymmetric Multimode Interference Power Splitter
Abstract
:1. Introduction
2. Theory and Structural Design
3. Simulation and Numerical Analysis of the Coupler
3.1. Determination of Single-Mode Conditions and Etching Depth
3.2. Design of the Coupling Zone
3.3. Design of Taper Structures
3.4. Simulation of Bandwidth and Extra Loss
3.5. Fabrication Tolerance Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, G.T.; Knights, A.P. Silicon Photonics: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 57–58. [Google Scholar]
- Lockwood, D.J.; Pavesi, L. Silicon Photonics; Springer: Berlin, Germany, 2004; pp. 136–137. [Google Scholar]
- Babin, C.; Stöhr, R.; Morioka, N.; Linkewitz, T.; Steidl, T.; Wörnle, R.; Liu, D.; Hesselmeier, E.; Vorobyov, V.; Denisenko, A. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 2022, 21, 67–73. [Google Scholar] [CrossRef]
- Han, X.; Jiang, Y.; Frigg, A.; Xiao, H.; Zhang, P.; Boes, A.; Nguyen, T.G.; Yang, J.; Ren, G.; Su, Y. Single-step etched grating couplers for silicon nitride loaded lithium niobate on insulator platform. APL Photonics 2021, 6, 086108. [Google Scholar] [CrossRef]
- Beck, P.; Wynne, L.C.; Iadanza, S.; O’Faolain, L.; Schulz, S.A.; Banzer, P. A high-precision silicon-on-insulator position sensor. APL Photonics 2023, 8, 046113. [Google Scholar] [CrossRef]
- Thylén, L.; Wosinski, L. Integrated photonics in the 21st century. Photonics Res. 2014, 2, 75–81. [Google Scholar] [CrossRef]
- Zhang, J.; Han, L.; Kuo, B.P.-P.; Radic, S. Broadband angled arbitrary ratio SOI MMI couplers with enhanced fabrication tolerance. J. Light. Technol. 2020, 38, 5748–5755. [Google Scholar] [CrossRef]
- Frishman, A.; Malka, D. An optical 1× 4 power splitter based on Silicon–Nitride MMI using strip waveguide structures. Nanomaterials 2023, 13, 2077. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Z.; Sun, C.; Deng, S.; Tang, X.; Zhang, L.; Jiang, R.; Shi, W.; Chen, Z.; Li, Z. Broadband silicon nitride nanophotonic phased arrays for wide-angle beam steering. Opt. Lett. 2021, 46, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yin, R.; Lu, L.; Huang, Q.; Jiang, S.; Liu, F.; Liu, Q.; Li, Q. Asymmetric Mach–Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence. J. Opt. 2023, 52, 1008–1021. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Soubache, I.; Farmani, A. Exploring surface plasmon resonance ring resonator structure for high sensitivity and ultra-high-Q optical filter with FDTD method. Opt. Quantum Electron. 2022, 54, 75. [Google Scholar] [CrossRef]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.; Chrostowski, L. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express 2015, 23, 3795–3808. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, J.; Doylend, J.K.; Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. Acs Photonics 2019, 6, 553–557. [Google Scholar] [CrossRef]
- Kim, D.U.; Park, Y.J.; Kim, D.Y.; Jeong, Y.; Lim, M.G.; Hong, M.S.; Her, M.J.; Rah, Y.; Choi, D.J.; Han, S. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photonics 2023, 17, 1089–1096. [Google Scholar] [CrossRef]
- Tahersima, M.H.; Kojima, K.; Koike-Akino, T.; Jha, D.; Wang, B.; Lin, C.; Parsons, K. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep. 2019, 9, 1368. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.-Y.; Yoon, J.; Yoon, H.; Park, H.-H.; Kurt, H. Experimental demonstration of inverse-designed silicon integrated photonic power splitters. Nanophotonics 2022, 11, 4581–4590. [Google Scholar] [CrossRef]
- Hansen, S.E.; Arregui, G.; Babar, A.N.; Christiansen, R.E.; Stobbe, S. Inverse design and characterization of compact, broadband, and low-loss chip-scale photonic power splitters. Mater. Quantum Technol. 2024, 4, 016201. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, L.; Li, X.; Zhou, Z. Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference. Opt. Lett. 2014, 39, 5590–5593. [Google Scholar] [CrossRef]
- Deng, Q.; Li, X.; Chen, R.; Zhou, Z. Ultra compact and low loss multimode interferenc splitter for arbitrary power splitting. In Proceedings of the 11th International Conference on Group IV Photonics (GFP), Paris, France, 27–29 August 2014; pp. 187–188. [Google Scholar]
- Zanzi, A.; Brimont, A.; Griol, A.; Sanchis, P.; Marti, J. Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications. Opt. Lett. 2016, 41, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, X.; Liu, Y.; Kuang, Y.; Guan, H.; Tian, L.; Li, Z.; Han, W. Ultra-compact low-loss variable-ratio 1 × 2 power splitter with ultra-low phase deviation based on asymmetric ladder-shaped multimode interference coupler. Opt. Express 2020, 28, 34137–34146. [Google Scholar] [CrossRef]
- Patsamanis, G.; Ketzaki, D.; Chatzitheocharis, D.; Chrysostomidis, T.; Roumpos, I.; Sacchetto, D.; Zervas, M.; Vyrsokinos, K. Silicon nitride asymmetric 1 × 2 power splitter based on multimode interference. In Proceedings of the Integrated Optics: Devices, Materials, and Technologies XXV, Virtual, 6–11 March 2021; pp. 236–241. [Google Scholar]
- Lin, Y.; Ke, W.; Ma, R.; Huang, F.; Tan, H.; Xu, J.; Lin, Z.; Cai, X. Arbitrary-ratio 1 × 2 optical power splitter based on thin-film lithium niobate. Opt. Express 2023, 31, 27266–27273. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef]
- Kasai, K.; Nakazawa, M.; Ishikawa, M.; Ishii, H. 8 kHz linewidth, 50 mW output, full C-band wavelength tunable DFB LD array with self-optical feedback. Opt. Express 2018, 26, 5675–5685. [Google Scholar] [CrossRef] [PubMed]
- Safronov, K.R.; Gulkin, D.N.; Antropov, I.M.; Abrashitova, K.A.; Bessonov, V.O.; Fedyanin, A.A. Multimode interference of Bloch surface electromagnetic waves. ACS Nano 2020, 14, 10428–10437. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.hopho.com.cn/khdzfw/31.html (accessed on 12 May 2024).
- Tian, Y.; Kang, Z.; Dai, T.; Xu, P.; Li, Y.; Lv, Y.; Zhang, X. Broadband polarization rotator and splitter based on 70 nm-etched waveguides on SOI platform. Photonics 2022, 9, 758. [Google Scholar] [CrossRef]
- Chen, R.; Deng, Q.; Zhou, Z. Ultra-low loss asymmetric multimode interference power splitters. In Proceedings of the 2018 IEEE 15th International Conference on Group IV Photonics (GFP), Cancun, Mexico, 29–31 August 2018. [Google Scholar]
- Rank, E.A.; Sentosa, R.; Harper, D.J.; Salas, M.; Gaugutz, A.; Seyringer, D.; Nevlacsil, S.; Maese-Novo, A.; Eggeling, M.; Muellner, P. Toward optical coherence tomography on a chip: In vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci. Appl. 2021, 10, 6. [Google Scholar] [CrossRef]
- Li, B.; Lin, Q.; Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 2023, 620, 316–322. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, Y.; Li, H.; Xu, M.; He, M.; Ke, W.; Tan, H.; Han, Y.; Li, Z.; Wang, D. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl. 2022, 11, 93. [Google Scholar] [CrossRef]
Device | #1 | #2 | #3 | #4 | #5 | #6 |
---|---|---|---|---|---|---|
L | 9.5 | 9.6 | 10.2 | 10.6 | 10.7 | 10.9 |
θ | 0 | 69.8 | 75.2 | 78.8 | 82.1 | 83.6 |
Ref. | Waveguide structure Type | Device Type | Length (μm) | Width (μm) | Loss (dB) | Bandwidth (nm) |
---|---|---|---|---|---|---|
[12] | dc | 32 | 1.3 | <1 | 1500–1600 | |
[13] | dc | 70 | 20 | <1 | 1510–1540 | |
[18] | strip | 1 × 2 | (1.8–2.8) | 1.5 | <0.4 | 1520–1580 |
[20] | rib | 1 × 2 | 10.5 | 3 | <0.8 | 1540–1580 |
[21] | strip | 1 × 2 | 3.3 | 2.4 | <0.67 | 1530–1570 |
[22] | strip | 1 × 2 | 10 | 4 | <0.6 | 1500–1600 |
[23] | strip | 1 × 2 | (57.5–108) | 9.6 | <0.3 | 1520–1590 |
This work | rib | 1 × 2 | (9.5–10.9) | 2.9 | <0.4 | 1500–1600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Lv, H.; Liu, B.; Wang, H.; Liu, F.; Liu, S.; Cong, Y.; Li, X.; Guo, Q. Compact Low Loss Ribbed Asymmetric Multimode Interference Power Splitter. Photonics 2024, 11, 472. https://doi.org/10.3390/photonics11050472
Liang Y, Lv H, Liu B, Wang H, Liu F, Liu S, Cong Y, Li X, Guo Q. Compact Low Loss Ribbed Asymmetric Multimode Interference Power Splitter. Photonics. 2024; 11(5):472. https://doi.org/10.3390/photonics11050472
Chicago/Turabian StyleLiang, Yanfeng, Huanlin Lv, Baichao Liu, Haoyu Wang, Fangxu Liu, Shuo Liu, Yang Cong, Xuanchen Li, and Qingxiao Guo. 2024. "Compact Low Loss Ribbed Asymmetric Multimode Interference Power Splitter" Photonics 11, no. 5: 472. https://doi.org/10.3390/photonics11050472
APA StyleLiang, Y., Lv, H., Liu, B., Wang, H., Liu, F., Liu, S., Cong, Y., Li, X., & Guo, Q. (2024). Compact Low Loss Ribbed Asymmetric Multimode Interference Power Splitter. Photonics, 11(5), 472. https://doi.org/10.3390/photonics11050472