Analysis of the Polarization Distribution and Spin Angular Momentum of the Interference Field Obtained by Co-Planar Beams with Linear and Circular Polarization
Abstract
:1. Introduction
2. Methods
Theoretical Background
3. Analysis and Modeling Results for Interfering Beams
3.1. Superposition of Two Horizontally Spaced Beams
3.1.1. Two Beams with the Same Polarization:
3.1.2. Two Beams with Orthogonal Linear Polarization:
3.1.3. Two Beams with Orthogonal Circular Polarizations:
3.2. Superposition of Four Beams Spaced Horizontally and Vertically
3.2.1. Four Beams with the Same Linear X-Polarization:
3.2.2. Four Beams with the Same Circular Polarizations:
3.2.3. Radial-Type Distribution:
3.2.4. Azimuthal-Type Distribution:
3.2.5. Mixed Radial–Azimuthal Distribution:
3.2.6. Pairwise Orthogonal Circular Polarizations:
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forbes, A. Structured light from lasers. Laser Photonics Rev. 2019, 13, 1900140. [Google Scholar] [CrossRef]
- Fu, P.; Ni, P.N.; Wu, B.; Pei, X.Z.; Wang, Q.H.; Chen, P.P.; Xu, C.; Kan, Q.; Chu, W.G.; Xie, Y.Y. Metasurface enabled on-chip generation and manipulation of vector beams from vertical cavity surface-emitting lasers. Adv. Mater. 2023, 35, 2204286. [Google Scholar] [CrossRef] [PubMed]
- Skoulas, E.; Manousaki, A.; Fotakis, C.; Stratakis, E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci. Rep. 2017, 7, 45114. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Guzmán, C.; Ndagano, B.; Forbes, A. A review of complex vector light fields and their applications. J. Opt. 2018, 20, 123001. [Google Scholar] [CrossRef]
- Stafeev, S.S.; Kotlyar, V.V.; Nalimov, A.G.; Kotlyar, M.V.; O’Faolain, L. Subwavelength gratings for polarization conversion and focusing of laser light. Photonics Nanostruct.-Fundam. Appl. 2017, 27, 32–41. [Google Scholar] [CrossRef]
- Wen, D.; Crozier, K.B. Metasurfaces 2.0: Laser-integrated and with vector field control. APL Photonics 2021, 6, 080902. [Google Scholar] [CrossRef]
- Khonina, S.N.; Butt, M.A.; Kazanskiy, N.L. A Review on Reconfigurable Metalenses Revolutionizing Flat Optics. Adv. Opt. Mater. 2023, 12, 2302794. [Google Scholar] [CrossRef]
- Maurer, C.; Jesacher, A.; Fürhapter, S.; Bernet, S.; Ritsch-Marte, M. Tailoring of arbitrary optical vector beams. New J. Phys. 2007, 9, 78. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P. Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution. Nanophotonics 2021, 11, 697–712. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Appl. Opt. 2010, 49, 1734–1738. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Sector sandwich structure: An easy-to-manufacture way towards complex vector beam generation. Opt Express 2020, 28, 27628–27643. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, Y.; Miwa, T.; Kadoguchi, N.; Kozawa, Y.; Sato, S. Multi-beam ultrafast laser processing of free-standing nanofilms. Appl. Phys. A 2023, 129, 101. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.X.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Kim, D.Y.; Tripathy, S.K.; Li, L.; Kumar, J. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 1995, 66, 1166–1168. [Google Scholar] [CrossRef]
- Yu, F.; Li, P.; Shen, H.; Mathur, S.; Lehr, C.-M.; Bakowsky, U.; Mücklich, F. Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface. Biomaterials 2005, 26, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.D.; Liang, W.P.; Lin, J.H.; Hsu, C.C.; Lin, C.H. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 2005, 13, 9605–9611. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Ku, Z.; Lee, S.C.; Brueck, S.R.J. Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 2011, 23, 147–179. [Google Scholar] [CrossRef] [PubMed]
- Vala, M.; Homola, J. Multiple beam interference lithography: A tool for rapid fabrication of plasmonic arrays of arbitrary shaped nanomotifs. Opt. Express 2016, 24, 15656–15665. [Google Scholar] [CrossRef]
- Rebollar, E.; Castillejo, M.; Ezquerra, T.A. Laser induced periodic surface structures on polymer films: From fundamentals to applications. Eur. Polym. J. 2015, 73, 162–174. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N.; Meshalkin, A.; Ivliev, N.A.; Achimova, E.; Abashkin, V.; Prisacar, A.; Podlipnov, V.V. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses. Opt. Lett. 2021, 46, 3037–3040. [Google Scholar] [CrossRef]
- Gorkhali, S.P.; Cloutier, S.G.; Crawford, G.P.; Pelcovits, R.A. Stable polarization gratings recorded in azo-dyedoped liquid crystals. Appl. Phys. Lett. 2006, 88, 251113. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Zhang, Z.; Yue, Y.; Li, D.; Maple, C. Effects of polarization on four-beam laser interference lithography. Appl. Phys. Lett. 2016, 102, 081903. [Google Scholar] [CrossRef]
- Achimova, E.; Stronski, A.; Abaskin, V.; Meshalkin, A.; Paiuk, A.; Prisacar, A.; Oleksenko, P.; Triduh, G. Direct surface relief formation on As2S3–Se nanomultilayers in dependence on polarization states of recording beams. Opt. Mater. 2015, 47, 566. [Google Scholar] [CrossRef]
- Meshalkin, A.; Losmanschii, C.; Prisacar, A.; Achimova, E.; Abashkin, V.; Pogrebnoi, S.; Macaev, F. Carbazole-based azopolymers as media for polarization holographic recording. Adv. Phys. Res. 2019, 1, 86–98. [Google Scholar]
- Porfirev, A.P.; Khonina, S.N.; Ivliev, N.A.; Fomchenkov, S.A.; Porfirev, D.P.; Karpeev, S.V. Polarization-sensitive patterning of azopolymer thin films using multiple structured laser beams. Sensors 2023, 23, 112. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Kaneko, Y.; Nakamoto, Y.; Noda, K.; Sasaki, T.; Kawatsuki, N.; Ono, H. Mode demultiplexing of vector beams using crossed-fork-shaped polarization grating fabricated by photoalignment of photo-crosslinkable liquid crystal polymer. Appl. Phys. Lett. 2019, 115, 061104. [Google Scholar] [CrossRef]
- Stay, J.L.; Gaylord, T.K. Three-beam-interference lithography: Contrast and crystallography. Appl. Opt. 2008, 47, 3221–3230. [Google Scholar] [CrossRef]
- He, J.; Fang, X.; Lin, Y.; Zhang, X. Polarization control in flexible interference lithography for nano-patterning of different photonic structures with optimized contrast. Opt. Express 2015, 23, 11518. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.B.; Jones, A.; McLeod, R.R. Contrast analysis in two-beam laser interference lithography. Appl. Opt. 2020, 59, 5399–5407. [Google Scholar] [CrossRef]
- Peng, F.; Du, J.; Du, J.; Wang, S.; Yan, W. Contrast analysis of polarization in three-beam interference lithography. Appl. Sci. 2021, 11, 4789. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1959, 253, 358–379. [Google Scholar]
- Khonina, S.N. Vortex beams with high-order cylindrical polarization: Features of focal distributions. Appl. Phys. B 2019, 125, 100. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 6th ed.; Pergamon: Oxford, UK, 1980. [Google Scholar]
- Cai, L.Z.; Yang, X.L. Interference of circularly polarized light: Contrast and application in fabrication of three-dimensional periodic microstructures. Opt. Laser Technol. 2002, 34, 671–674. [Google Scholar] [CrossRef]
- Burrow, G.M.; Gaylord, T.K. Multi-beam interference advances and applications: Nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures. Micromachines 2011, 2, 221–257. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Shi, Y.; Jiang, S. The study on optical lattice formed by four-beam interference. Optik 2016, 127, 10421–10427. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.-H.; Yu, Y.-H.; Sun, H.-B. Laser interference fabrication of large-area functional periodic structure surface. Front. Mech. Eng. 2018, 13, 493–503. [Google Scholar] [CrossRef]
- Shimizu, Y. Laser Interference Lithography for Fabrication of Planar Scale Gratings for Optical Metrology. Nanomanuf. Metrol. 2021, 4, 3–27. [Google Scholar] [CrossRef]
- Sekkat, Z.; Kawata, S. Laser nanofabrication in photoresists and azopolymers. Laser Photonics Rev. 2014, 8, 1–26. [Google Scholar] [CrossRef]
- Meier, M.; Romano, V.; Feurer, T. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 2007, 86, 329–334. [Google Scholar] [CrossRef]
- Danilov, P.A.; Saraeva, I.N.; Kudryashov, S.I.; Porfirev, A.P.; Kuchmizhak, A.A.; Zhizhchenko, A.Y.; Rudenko, A.A.; Umanskaya, S.F.; Zayarny, D.A.; Ionin, A.A.; et al. Polarization-selective excitation of dye luminescence on a gold film by structured ultrashort laser pulses. JETP Lett. 2018, 107, 15–18. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, L.; Liu, Y.; Tan, X. A review of polarization-sensitive materials for polarization holography. Materials 2020, 13, 5562. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.; Khonina, S.; Ivliev, N.; Meshalkin, A.; Achimova, E.; Forbes, A. Writing and reading with the longitudinal component of light using carbazole-containing azopolymer thin films. Sci. Rep. 2022, 12, 3477. [Google Scholar] [CrossRef] [PubMed]
- Priimagi, A.; Shevchenko, A. Azopolymer-Based Micro-and Nanopatterning for Photonic Applications. J. Polym. Sci. B Polym. Phys. 2014, 52, 163–182. [Google Scholar] [CrossRef]
- Vladimirov, V.S. Methods of the Theory of Generalized Functions; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Vaz, J., Jr. Some comments on integrals involving the Dirac delta function. Rev. Bras. Ensino Fís. 2022, 44, e20210378. [Google Scholar] [CrossRef]
- Bekshaev, A. Dynamical characteristics of electromagnetic field under conditions of total internal reflection. J. Opt. 2018, 4, 045604. [Google Scholar] [CrossRef]
- Holbourn, A. Angular Momentum of Circularly Polarised Light. Nature 1936, 137, 31. [Google Scholar] [CrossRef]
- Garcés-Chávez, V.; McGloin, D.; Padgett, M.J.; Dultz, W.; Schmitzer, H.; Dholakia, K. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 2003, 91, 093602. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Yao, B.; Liang, Y.; Zhang, P. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations. Opt. Express 2016, 24, 20604–20612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, Y.; Zhu, Z.; Rui, G.; Cui, Y.; Gu, B. Theoretical investigation on asymmetrical spinning and orbiting motions of particles in a tightly focused power-exponent azimuthal-variant vector field. Opt. Express 2018, 26, 4318–4329. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 2012, 85, 061801. [Google Scholar] [CrossRef]
- Banzer, P.; Neugebauer, M.; Aiello, A.; Marquardt, C.; Lindlein, N.; Bauer, T.; Leuchs, G. The photonic wheel-demonstration of a state of light with purely transverse angular momentum. J. Eur. Opt. Soc. 2013, 8, 13032. [Google Scholar] [CrossRef]
- Aiello, A.; Banzer, P.; Neugebauer, M.; Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 2015, 9, 789. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 2015, 592, 1. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Porfirev, A.P. Vector Lissajous laser beams. Opt. Lett. 2020, 45, 4112–4115. [Google Scholar] [CrossRef]
- Ralston, J. Gaussian beams and the propagation of singularities. Studies in Partial Differential Equations. MAA Stud. Math. 1983, 23, 206–248. [Google Scholar]
- Motamed, M.; Runborg, O. A wavefront-based Gaussian beam method for computing high frequency wave propagation problems. Comput. Math. Appl. 2015, 69, 949–963. [Google Scholar] [CrossRef]
- Meshalkin, A.; Robu, S.; Achimova, E.; Prisacar, A.; Shepel, D.; Abaskin, V.; Triduh, G. Direct photoinduced surface relief formation in carbazole-based azopolymer using polarization holographic recording. J. Optoelectron. Adv. Mater. 2016, 18, 763–768. [Google Scholar]
- Ivliev, N.A.; Khonina, S.N.; Podlipnov, V.V.; Karpeev, S.V. Holographic Writing of Forked Diffraction Gratings on the Surface of a Chalcogenide Glass Semiconductor. Photonics 2023, 10, 125. [Google Scholar] [CrossRef]
- Kulikovska, O.; Gharagozloo-Hubmann, K.; Stumpe, J.; Huey, B.D.; Bliznyuk, V.N. Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM. Nanotechnology 2012, 23, 485309. [Google Scholar] [CrossRef]
- Rao, L.; Pu, J.; Chen, Z.; Yei, P. Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens. Opt. Laser Technol. 2009, 41, 241–246. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Guo, Y.-K.; Zhu, L.-Q. Tight focusing of axially symmetric polarized vortex beams. Chin. Phys. B 2014, 23, 044201. [Google Scholar] [CrossRef]
- Freitas Carvalho, F.; Augusto de Moraes Cruz, C.; Costa Marques, G.; Martins Cruz Damasceno, K. Angular Light, Polarization and Stokes Parameters Information in a Hybrid Image Sensor with Division of Focal Plane. Sensors 2020, 20, 3391. [Google Scholar] [CrossRef] [PubMed]
- Ruh, D.; Tränkle, D.; Rohrbach, A. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction. Opt. Express 2011, 19, 21627. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T.; Nakatsuka, R.; Nakajima, K.; Doi, K.; Kawano, S. Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex. Nanoscale 2020, 12, 6673. [Google Scholar] [CrossRef]
- Ghosh, R.; Bentil, S.A.; Jaurez, J.J. Particle-wall hydrodynamic effects on optical trapping viscometry. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132942. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonina, S.N.; Ustinov, A.V.; Porfirev, A.P.; Karpeev, S.V. Analysis of the Polarization Distribution and Spin Angular Momentum of the Interference Field Obtained by Co-Planar Beams with Linear and Circular Polarization. Photonics 2024, 11, 478. https://doi.org/10.3390/photonics11050478
Khonina SN, Ustinov AV, Porfirev AP, Karpeev SV. Analysis of the Polarization Distribution and Spin Angular Momentum of the Interference Field Obtained by Co-Planar Beams with Linear and Circular Polarization. Photonics. 2024; 11(5):478. https://doi.org/10.3390/photonics11050478
Chicago/Turabian StyleKhonina, Svetlana N., Andrey V. Ustinov, Alexey P. Porfirev, and Sergey V. Karpeev. 2024. "Analysis of the Polarization Distribution and Spin Angular Momentum of the Interference Field Obtained by Co-Planar Beams with Linear and Circular Polarization" Photonics 11, no. 5: 478. https://doi.org/10.3390/photonics11050478
APA StyleKhonina, S. N., Ustinov, A. V., Porfirev, A. P., & Karpeev, S. V. (2024). Analysis of the Polarization Distribution and Spin Angular Momentum of the Interference Field Obtained by Co-Planar Beams with Linear and Circular Polarization. Photonics, 11(5), 478. https://doi.org/10.3390/photonics11050478