A Hybrid Improved SAC-IA with a KD-ICP Algorithm for Local Point Cloud Alignment Optimization
Abstract
:1. Introduction
2. Point Cloud Alignment
2.1. Mathematical Model
2.2. Improved SAC-IA Point Cloud Initial Alignment Algorithm
2.3. ICP Algorithm of Point Clouds Incorporating Bidirectional KD-Tree Optimization for Fine Alignment
2.4. The Overall Flow of the Improved Alignment Method
3. Test Experiment
3.1. Classical Sample Data
3.2. Initial Alignment of Classical Sample
3.3. Fine Alignment of Classical Sample
4. Practical Experiment
4.1. Scanned Sample Data Acquisition
4.2. Scanned Sample Data Preprocessing
4.3. Initial Alignment of Scanned Sample
4.4. Fine Alignment of Scanned Sample
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, S.; Xiao, Y.; Yang, X.; Wang, H. Attitude Estimation Method for Target Ships Based on LiDAR Point Clouds via An Improved RANSAC. J. Mar. Sci. Eng. 2023, 11, 1755. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, H.; Cao, W.; Fu, Y.; He, L.; Bao, N. Extraction of Step-Feature Lines in Open-Pit Mines Based on UAV Point-Cloud Data. Sensors 2022, 22, 5706. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, H.; Wu, L. Feature extraction of point clouds based on region clustering segmentation. Multimed. Tools Appl. 2020, 79, 11861–11889. [Google Scholar] [CrossRef]
- Zhao, T.; Li, L.; Tian, T.; Ma, J.; Tian, J. Patch-guided point matching for point cloud registration with low overlap. Pattern Recognit. 2023, 144, 109876. [Google Scholar] [CrossRef]
- Shi, J.; Ye, H.; Yang, B.; Cao, F. An iteration-based interactive attention network for 3D point cloud registration. Neurocomputing 2023, 560, 126822. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Wang, X.; Zhao, T.; Wang, Y. Method for detecting pipeline spatial attitude using point cloud alignment. Measurement 2023, 219, 113279. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.F.; Stutz, G.E. (Eds.) Handbook of Optical and Laser Scanning, 2nd ed.; CRC Press: London, UK, 2011. [Google Scholar]
- Będkowski, J. Benchmark of multi-view Terrestrial Laser Scanning Point Cloud data registration algorithms. Measurement 2023, 219, 113199. [Google Scholar] [CrossRef]
- Sahillioğlu, Y.; Kavan, L. Scale-Adaptive ICP. Graph Models 2021, 116, 101113. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, Q.; Li, X.; Bi, Q. Point cloud registration algorithm based on curvature feature similarity. Measurement 2021, 177, 109274. [Google Scholar] [CrossRef]
- He, Y.; Liang, B.; Yang, J.; Li, S.; He, J. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors 2017, 17, 1862. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Ru, Y.; Fang, S.; Zhou, H.; Xue, J.; Zhang, Y.; Li, J.; Xu, G.; Fan, G. A Tree Point Cloud Simplification Method Based on FPFH Information Entropy. Forests 2023, 14, 1507. [Google Scholar] [CrossRef]
- Singh, D.-P.; Yadav, M. 3D-MFDNN: Three-dimensional multi-feature descriptors combined deep neural network for vegetation segmentation from airborne laser scanning data. Measurement 2023, 221, 113465. [Google Scholar] [CrossRef]
- Ge, P.; Wang, Y.; Zhou, J.; Wang, B. Point cloud optimization of multi-view images in digital image correlation system. Opt. Lasers Eng. 2024, 173, 107931. [Google Scholar] [CrossRef]
- Su, Z.; Hu, C.; Hao, J.; Ge, P.; Han, B. Target Detection in Single-Photon Lidar Using CNN Based on Point Cloud Method. Photonics 2023, 11, 43. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, C.; Guo, B.; Xu, Y.; Kong, C.; Zhu, Y.; Xu, Z.; Jin, J. The Flatness Error Evaluation of Metal Workpieces Based on Line Laser Scanning Digital Imaging Technology. Photonics 2023, 10, 1333. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, C.; Zhang, H. PR-Alignment: Multidimensional Adaptive Registration Algorithm Based on Practical Application Scenarios. Machines 2023, 11, 254. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Y.; Xu, Q.; Luo, Z.; Wang, X.; Li, H. Uncertainty modeling and evaluation of profile measurement by structured light scanner. Meas. Sci. Technol. 2022, 33, 5018. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Li, W.; Yin, X.; Yuan, X.; Chen, H.; Zhou, J.; Ma, X. High-accuracy calibration method for an underwater one-mirror galvanometric laser scanner. Opt. Express 2023, 31, 5973–5989. [Google Scholar] [CrossRef]
- He, Y.; Yang, J.; Hou, X.; Pang, S.; Chen, J. ICP registration with DCA descriptor for 3D point clouds. Opt. Express 2021, 29, 20423–20439. [Google Scholar] [CrossRef]
- Yu, X.; Rao, Y.; Wang, Z.; Lu, J.; Zhou, J. AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware Transformers. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 14114–14130. [Google Scholar] [CrossRef]
- Wang, N.; Ma, D.; Du, X.; Li, B.; Di, D.; Pang, G.; Duan, Y. An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes. Tunn. Undergr. Space Technol. 2024, 143, 105480. [Google Scholar] [CrossRef]
- Gou, F.; Li, Y.; Hou, C.; Wang, H. 3D point cloud global denoising algorithm based on different noise characteristics. Meas. Sci. Technol. 2024, 35, 5032. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Wang, C.; Yang, B. Non-iterative denoising algorithm based on a dual threshold for a 3D point cloud. Opt. Lasers Eng. 2020, 126, 105921. [Google Scholar] [CrossRef]
- Baiocchi, A.; Giagu, S.; Napoli, C.; Serra, M.; Nardelli, P.; Valleriani, M. Artificial neural networks exploiting point cloud data for fragmented solid objects classification. Mach. Learn. Sci. Technol. 2023, 4, 5025. [Google Scholar] [CrossRef]
- Li, M.; Nan, L. Feature-preserving 3D mesh simplification for urban buildings. ISPRS J. Photogramm. Remote Sens. 2021, 173, 135–150. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Q.; Xiao, D.; He, L.; Liu, R.; Xiang, B. A new point cloud simplification method with feature and integrity preservation by partition strategy. Measurement 2022, 197, 111173. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Z.; Zhong, K.; Shi, Y. An automatic and robust point cloud registration framework based on view-invariant local feature descriptors and transformation con-sistency verification. Opt. Lasers Eng. 2017, 98, 37–45. [Google Scholar] [CrossRef]
- Si, H.; Qiu, J.; Li, Y. A Review of Point Cloud Registration Algorithms for Laser Scanners: Applications in Large-Scale Aircraft Measurement. Appl. Sci. 2022, 12, 10247. [Google Scholar] [CrossRef]
- Fang, L.; You, Z.; Shen, G.; Chen, Y.; Li, J. A joint deep learning network of point clouds and multiple views for roadside object classification from lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2022, 193, 115–136. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, D.; Li, D.; Zhang, Y.; Ling, Q. Optimized GICP registration algorithm based on principal component analysis for point cloud edge extraction. Meas. Control 2024, 57, 77–89. [Google Scholar] [CrossRef]
Clarification | Algorithm | Bunny Sample | Dragon Sample | |||
---|---|---|---|---|---|---|
Runtime (s) | RMSE (mm) | Runtime (s) | RMSE (mm) | |||
Initial alignment | SAC-IA | 50.939 | 7.980 × 10−3 | 40.138 | 1.373 × 10−2 | |
RANSAC | 45.844 | 7.574 × 10−3 | 47.134 | 2.633 × 10−2 | ||
Improved SAC-IA | 26.016 | 1.924 × 10−3 | 22.573 | 9.594 × 10−3 | ||
Fine alignment | SAC-IA result | ICP | 7.471 | 7.860 × 10−3 | 3.485 | 7.609 × 10−7 |
KD-ICP | 4.404 | 9.573 × 10−4 | 2.031 | 5.395 × 10−7 | ||
Improved SAC-IA result | ICP | 6.000 | 7.261 × 10−4 | 3.193 | 7.492 × 10−7 | |
KD-ICP | 2.960 | 7.245 × 10−4 | 1.422 | 2.878 × 10−7 |
ICP | GICP | KD-ICP | |
---|---|---|---|
Visualization of alignment results | |||
RMSE (mm) | 2.2538 | 2.1763 | 0.7480 |
Clarification | Algorithm | Runtime (s) | RMSE (mm) | |
---|---|---|---|---|
Initial alignment | SAC-IA | 387.591 | 1.079 | |
RANSAC | 362.716 | 2.293 | ||
Improved SAC-IA | 240.964 | 0.953 | ||
Fine alignment | SAC-IA result | ICP | 27.775 | 0.605 |
KD-ICP | 14.276 | 0.598 | ||
Improved SAC-IA result | ICP | 17.499 | 0.601 | |
KD-ICP | 9.822 | 0.597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Chu, H.; Li, Y.; Tang, Y.; Luo, Z.; Li, S. A Hybrid Improved SAC-IA with a KD-ICP Algorithm for Local Point Cloud Alignment Optimization. Photonics 2024, 11, 635. https://doi.org/10.3390/photonics11070635
Cheng Y, Chu H, Li Y, Tang Y, Luo Z, Li S. A Hybrid Improved SAC-IA with a KD-ICP Algorithm for Local Point Cloud Alignment Optimization. Photonics. 2024; 11(7):635. https://doi.org/10.3390/photonics11070635
Chicago/Turabian StyleCheng, Yinbao, Haiman Chu, Yaru Li, Yingqi Tang, Zai Luo, and Shaohui Li. 2024. "A Hybrid Improved SAC-IA with a KD-ICP Algorithm for Local Point Cloud Alignment Optimization" Photonics 11, no. 7: 635. https://doi.org/10.3390/photonics11070635
APA StyleCheng, Y., Chu, H., Li, Y., Tang, Y., Luo, Z., & Li, S. (2024). A Hybrid Improved SAC-IA with a KD-ICP Algorithm for Local Point Cloud Alignment Optimization. Photonics, 11(7), 635. https://doi.org/10.3390/photonics11070635