Photon-Number-Resolving Detection with Highly Efficient InGaAs/InAlAs Single-Photon Avalanche Diode
Abstract
:1. Introduction
2. SPAD Design Concepts
3. Experimental Details
4. Photon-Number-Resolving Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knill, E.; Laflamme, R.; Milburn, G.J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46–52. [Google Scholar] [CrossRef]
- Ralph, T.C.; Gilchrist, A.; Milburn, G.J.; Munro, W.J.; Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 2003, 68, 042319. [Google Scholar] [CrossRef]
- Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007, 79, 135–174. [Google Scholar] [CrossRef]
- O’Brien, J.L. Optical quantum computing. Science 2007, 318, 1567–1570. [Google Scholar] [CrossRef]
- Matthews, J.C.; Zhou, X.-Q.; Cable, H.; Shadbolt, P.J.; Saunders, D.J.; A Durkin, G.; Pryde, G.J.; O’brien, J.L. Towards practical quantum metrology with photon counting. NPJ Quantum Inf. 2016, 2, 16023. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Toda, N.; Hofmann, H.F. Quantum enhancement of sensitivity achieved by photon-number-resolving detection in the dark port of a two-path interferometer operating at high intensities. Phys. Rev. A 2019, 100, 013814. [Google Scholar] [CrossRef]
- von Helversen, M.; Böhm, J.; Schmidt, M.; Gschrey, M.; Schulze, J.-H.; Strittmatter, A.; Rodt, S.; Beyer, J.; Heindel, T.; Reitzenstein, S. Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New J. Phys. 2019, 21, 035007. [Google Scholar] [CrossRef]
- Becerra, F.E.; Fan, J.; Migdall, A. Photon number resolution enables quantum receiver for realistic coherent optical communications. Nat. Photonics 2015, 9, 48–53. [Google Scholar] [CrossRef]
- DiMario, M.T.; Kunz, L.; Banaszek, K.; Becerra, F.E. Optimized communication strategies with binary coherent states over phase noise channels. NPJ Quantum Inf. 2019, 5, 65. [Google Scholar] [CrossRef]
- Afek, I.; Natan, A.; Ambar, O.; Silberberg, Y. Quantum state measurements using multipixel photon detectors. Phys. Rev. A 2009, 79, 043830. [Google Scholar] [CrossRef]
- Laiho, K.; Avenhaus, M.; Cassemiro, K.N.; Silberhorn, C. Direct probing of the wigner function by time multiplexed detection of photon statistics. New J. Phys. 2009, 11, 043012. [Google Scholar] [CrossRef]
- Lita, A.E.; Reddy, D.V.; Verma, V.B.; Mirin, R.P.; Nam, S.W. Development of Superconducting Single-Photon and Photon-Number Resolving Detectors for Quantum Applications. J. Light. Technol. 2022, 40, 7578–7597. [Google Scholar] [CrossRef]
- Lin, J.; Sun, Y.; Wu, W.; Huang, K.; Liang, Y.; Yan, M.; Zeng, H. High-speed photon-number-resolving detection via a GHz-gated SiPM. Opt. Express 2022, 30, 7501–7510. [Google Scholar] [CrossRef]
- Akiba, M.; Inagaki, K.; Tsujino, K. Photon number resolving SiPM detector with 1 GHz count rate. Opt. Express 2012, 20, 2779–2788. [Google Scholar] [CrossRef]
- Laiho, K.; Cassemiro, K.N.; Gross, D.; Silberhorn, C. Probing the negative wigner function of a pulsed single photon point by point. Phys. Rev. Lett. 2010, 105, 253603. [Google Scholar] [CrossRef]
- Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W. Incomplete detection of nonclassical phase-space distributions. Phys. Rev. Lett. 2018, 120, 063607. [Google Scholar] [CrossRef] [PubMed]
- Harder, G.; Silberhorn, C.; Rehacek, J.; Hradil, Z.; Motka, L.; Stoklasa, B.; Sánchez-Soto, L.L. Local sampling of the wigner function at telecom wavelength with loss-tolerant detection of photon statistics. Phys. Rev. Lett. 2016, 116, 133601. [Google Scholar] [CrossRef]
- Ding, C.J.; Rong, Y.Y.; Chen, Y.; Chen, X.L.; Wu, E. Direct Measurement of Non-Classical Photon Statistics with a Multi-Pixel Photon Counter. J. Electron. Sci. Technol. 2019, 17, 204–212. [Google Scholar] [CrossRef]
- Hattori, K.; Konno, T.; Miura, Y.; Takasu, S.; Fukuda, D. An optical transition-edge sensor with high energy resolution. Supercond. Sci. Technol. 2022, 35, 095002. [Google Scholar] [CrossRef]
- Kardynał, B.E.; Yuan, Z.L.; Shields, A.J. An avalanche-photodiode-based photon-number-resolving detector. Nat. Photon. 2008, 2, 425–428. [Google Scholar] [CrossRef]
- Chen, X.; Wu, E.; Xu, L.; Liang, Y.; Wu, G.; Zeng, H. Photon-number-resolving performance of the InGaAs/InP avalanche photodiode with short gates. Appl. Phys. Lett. 2009, 95, 131118. [Google Scholar] [CrossRef]
- Chen, X.; Wu, E.; Wu, G.; Zeng, H. Low-noise high-speed InGaAs/InP-based single-photon detector. Opt. Express 2010, 18, 7010–7018. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Liu, Z.; Fei, Q.; Zeng, H. GHz Photon-number-resolving Detection with InGaAs/InP APD. In CLEO: Applications and Technology; Optica Publishing Group: Bellingham, WA, USA, 2019; p. JTu2A-40. [Google Scholar] [CrossRef]
- Cao, S.; Zhao, Y.; Feng, S.; Zuo, Y.; Zhang, L.; Cheng, B.; Li, C. Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes. Nanoscale Res. Lett. 2019, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.C.L.T.; Tan, C.H.; Dimler, S.J.; Tan, L.J.J.; Ng, J.S.; Goh, Y.L.; David, J.P.R. A Theoretical Comparison of the Breakdown Behavior of In0.52Al0.48As and InP Near-Infrared Single-Photon Avalanche Photodiodes. IEEE J. Quantum Electron. 2009, 45, 566–571. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Liao, Y.-M.; Wu, P.-L.; Chen, C.-E.; Teng, Y.-J.; Hung, Y.-Y.; Shi, J.-W. In0.52Al0.48As Based Single Photon Avalanche Diodes with Stepped E-Field in Multiplication Layers and High Efficiency Beyond 60%. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 3802107. [Google Scholar] [CrossRef]
Literature | Gated Frequency (MHz) | Gate Width (ps) | Laser Repetition Rate (MHz) | SPDE (%) | Temp. (K) | Resolvable Photon Number | Figure of Merit, FWHM⁄ΔV * |
---|---|---|---|---|---|---|---|
2008 InGaAs/InP [20] | 622 | -- | -- | 10 | 243 | 4 | 0.711 |
2009 InGaAs/InP [21] | 200 | 500 | 1 | 19 | 233 | 4 | 0.69 |
2010 InGaAs/InP [22] | 200 | 700 | 1 | 30.5 | 243 | 2 | 1.11 |
2019 InGaAs/InP [23] | 1000 | -- | -- | 40 | -- | 3 | 1.07 |
2024 This work | 105 | 1500 | 26.2 | 46 | 200 | 5 | 0.99 |
Excess Bias (%) | SPDE (%) | Separation, ΔV (V) | FWHM (V) | FWHM/ΔV |
---|---|---|---|---|
2.569 | 24 | 0.012 | 0.01634 | 1.361 |
2.766 | 33 | 0.016 | 0.01847 | 1.154 |
2.964 | 46 | 0.022 | 0.02178 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-S.; Chen, T.-Y.; Chen, Y.-J.; Kan, W.-H.; Liu, X.-W.; Shi, J.-W. Photon-Number-Resolving Detection with Highly Efficient InGaAs/InAlAs Single-Photon Avalanche Diode. Photonics 2024, 11, 724. https://doi.org/10.3390/photonics11080724
Lee Y-S, Chen T-Y, Chen Y-J, Kan W-H, Liu X-W, Shi J-W. Photon-Number-Resolving Detection with Highly Efficient InGaAs/InAlAs Single-Photon Avalanche Diode. Photonics. 2024; 11(8):724. https://doi.org/10.3390/photonics11080724
Chicago/Turabian StyleLee, Yi-Shan, Tzu-Yang Chen, Yu-Ju Chen, Wei-Hong Kan, Xue-Wen Liu, and Jin-Wei Shi. 2024. "Photon-Number-Resolving Detection with Highly Efficient InGaAs/InAlAs Single-Photon Avalanche Diode" Photonics 11, no. 8: 724. https://doi.org/10.3390/photonics11080724
APA StyleLee, Y. -S., Chen, T. -Y., Chen, Y. -J., Kan, W. -H., Liu, X. -W., & Shi, J. -W. (2024). Photon-Number-Resolving Detection with Highly Efficient InGaAs/InAlAs Single-Photon Avalanche Diode. Photonics, 11(8), 724. https://doi.org/10.3390/photonics11080724