The Rapid Detection of Paclitaxel-Induced Changes in Cervical Cancer Cells Using an Ultrasensitive Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Cell Culture
2.1.2. Reagents
2.1.3. Terahertz Sample Preparation
2.1.4. Cell Viability Assay
2.2. Terahertz Spectroscopy System
2.3. SPR Biosensor
2.4. Data Processing and Analysis
3. Result and Discussion
3.1. Viability of Hela Cells
3.2. Terahertz Spectroscopy Investigation into the Effects of Paclitaxel on HeLa Cells
3.3. Morphology of HeLa Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cree, I.A.; White, V.A.; Indave, B.I.; Lokuhetty, D. Revising the WHO classification: Female genital tract tumours. Histopathology 2020, 76, 151–156. [Google Scholar] [CrossRef]
- Lowy, D.R.; Solomon, D.; Hildesheim, A.; Schiller, J.T.; Schiffman, M. Human papillomavirus infection and the primary and secondary prevention of cervical cancer. Cancer 2008, 113, 1980–1993. [Google Scholar] [CrossRef] [PubMed]
- Javeed, A.; Ashraf, M.; Riaz, A.; Ghafoor, A.; Afzal, S.; Mukhtar, M.M. Paclitaxel and immune system. European Journal of Pharmaceutical Sciences: Official. J. Eur. Fed. Pharm. Sci. 2009, 38, 283–290. [Google Scholar] [CrossRef] [PubMed]
- De Furia, M.D. Paclitaxel (Taxol®): A new natural product with major anticancer activity. Phytomedicine Int. J. Phytother. Phytopharm. 1997, 4, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Dadgar, S.; Ramjan, Z.; Floriano, W.B. Paclitaxel is an inhibitor and its boron dipyrromethene derivative is a fluorescent recognition agent for botulinum neurotoxin subtype A. J. Med. Chem. 2013, 56, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Kampan, N.C.; Madondo, M.T.; McNally, O.M.; Quinn, M.; Plebanski, M. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BioMed Res. Int. 2015, 2015, 413076. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Li, S.; Li, W.; Wei, Z.; Guo, H.; Wei, W.; Zhang, S. Disruption of protein neddylation with MLN4924 attenuates paclitaxel-induced apoptosis and microtubule polymerization in ovarian cancer cells. Biochem. Biophys. Res. Commun. 2019, 508, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Punzi, S.; Meliksetian, M.; Riva, L.; Marocchi, F.; Pruneri, G.; Criscitiello, C.; Orsi, F.; Spaggiari, L.; Casiraghi, M.; Della Vigna, P.; et al. Development of Personalized Therapeutic Strategies by Targeting Actionable Vulnerabilities in Metastatic and Chemotherapy-Resistant Breast Cancer PDXs. Cells 2019, 8, 605. [Google Scholar] [CrossRef] [PubMed]
- Mouradov, D.; Sloggett, C.; Jorissen, R.N.; Love, C.G.; Li, S.; Burgess, A.W.; Arango, D.; Strausberg, R.L.; Buchanan, D.; Wormald, S.; et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014, 74, 3238–3247. [Google Scholar] [CrossRef]
- Wilding, J.L.; Bodmer, W.F. Cancer cell lines for drug discovery and development. Cancer Res. 2014, 74, 2377–2384. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Oh, C.; Park, J.H. Cooperative tumour cell membrane targeted phototherapy. Nat. Commun. 2017, 8, 15880. [Google Scholar] [CrossRef] [PubMed]
- Adey, A.; Burton, J.N.; Kitzman, J.O.; Hiatt, J.B.; Lewis, A.P.; Martin, B.K.; Qiu, R.; Lee, C.; Shendure, J. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 2013, 500, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Carney, D.N.; Gazdar, A.F.; Bepler, G.; Guccion, J.G.; Marangos, P.J.; Moody, T.W.; Zweig, M.H.; Minna, J.D. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res. 1985, 45, 2913–2923. [Google Scholar] [PubMed]
- Janckila, A.J.; Cardwell, E.M.; Yam, L.T.; Li, C.Y. Hairy cell identification by immunohistochemistry of tartrate-resistant acid phosphatase. Blood 1995, 85, 2839–2844. [Google Scholar] [CrossRef]
- Zaynagetdinov, R.; Sherrill, T.P.; Kendall, P.L.; Segal, B.H.; Weller, K.P.; Tighe, R.M.; Blackwell, T.S. Identification of myeloid cell subsets in murine lungs using flow cytometry. Am. J. Respir. Cell Mol. Biol. 2013, 49, 180–189. [Google Scholar] [CrossRef]
- Crisa, L.; McMaster, M.T.; Ishii, J.K.; Fisher, S.J.; Salomon, D.R. Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J. Exp. Med. 1997, 186, 289–298. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Q.; Zhang, Q.; Lu, Y.; Zhao, W.; Cai, W.; Qi, J.; Yao, J.; Xu, J. Conversion from terahertz-guided waves to surface waves with metasurface. Opt. Express 2018, 26, 31233–31243. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Wang, H.; Tan, B.; Xiang, X.; Su, R.; Zhang, C.; Jin, B.; Chen, J.; Wu, P. Simple terahertz metasurface with broadband and efficient functionality. Opt. Express 2022, 30, 45488–45498. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Shan, L.; Fan, S.; Zhu, Z.; Liu, X. Quantitative analysis of bisphenol analogue mixtures by terahertz spectroscopy using machine learning method. Food Chem. 2021, 352, 129313. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.; Hou, L.; Ma, C.; Yang, L.; Dong, C.; Wang, Z.; Wang, H.; Guo, J.; Xu, S.; et al. Detection of living cervical cancer cells by transient terahertz spectroscopy. J. Biophotonics 2021, 14, e202000237. [Google Scholar] [CrossRef]
- Shou, Y.; Wang, Y.; Miao, L.; Chen, S.; Luo, H. Realization of all-optical higher-order spatial differentiators based on cascaded operations. Opt. Lett. 2022, 47, 5981–5984. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, F.; Zhan, J.; Qiang, J.; Xie, Q.; Yang, L.; Deng, S.; Zhang, Y. Terahertz liquid crystal programmable metasurface based on resonance switching. Opt. Lett. 2022, 47, 1891–1894. [Google Scholar] [CrossRef] [PubMed]
- Chiang, W.F.; Silalahi, H.M.; Chiang, Y.C.; Hsu, M.C.; Zhang, Y.S.; Liu, J.H.; Yu, Y.; Lee, C.R.; Huang, C.Y. Continuously tunable intensity modulators with large switching contrasts using liquid crystal elastomer films that are deposited with terahertz metamaterials. Opt. Express 2020, 28, 27676–27687. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Peng, Y.; Jin, Z.; Wu, X.; Gu, H.; Wei, D.; Zhu, Y.; Zhuang, S. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC. Chem. Eng. J. 2023, 462, 142347. [Google Scholar] [CrossRef]
- Braun, K.; Stürzel, C.M.; Biskupek, J.; Kaiser, U.; Kirchhoff, F.; Lindén, M. Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicology in vitro: An international journal published in association with BIBRA. Toxicol. Vitr. 2018, 52, 214–221. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, P.; Li, J.; Meng, L.; Gao, H.; Yuan, X.; Wu, D. An electrochemical method for evaluation the cytotoxicity of fluorene on reduced graphene oxide quantum dots modified electrode. Sens. Actuators B Chem. 2018, 255, 2595–2600. [Google Scholar] [CrossRef]
- Qin, H.; Liu, J.; Zhang, Z.; Li, J.; Gao, G.; Yang, Y.; Yuan, X.; Wu, D. In situ electrochemical assessment of cytotoxicity of chlorophenols in MCF-7 and HeLa cells. Anal. Biochem. 2014, 462, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis 2022, 27, 647–667. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Tang, X.; Wang, Y.; Zhang, Z.; Yang, H. Paclitaxel Induces the Apoptosis of Prostate Cancer Cells via ROS-Mediated HIF-1α Expression. Molecules 2022, 27, 7183. [Google Scholar] [CrossRef]
- Xie, K.; Liu, L.; Wang, M.; Li, X.; Wang, B.; Yin, S.; Chen, W.; Lin, Y.; Zhu, X. IMPA2 blocks cervical cancer cell apoptosis and induces paclitaxel resistance through p53-mediated AIFM2 regulation. Acta Biochim. Biophys. Sin. 2023, 55, 623–632. [Google Scholar] [CrossRef] [PubMed]
Viability of Hela Cells | ||||
---|---|---|---|---|
Drug Concentration (nM) | CCK8 Mean | CCK8 SE | MTT Mean | MTT SE |
0 | 1 | 0 | 1 | 0 |
5 | 0.958 | 0.01924 | 0.929 | 0.02794 |
10 | 0.86 | 0.02449 | 0.8984 | 0.01878 |
20 | 0.826 * | 0.02302 | 0.8256 * | 0.03188 |
40 | 0.582 ** | 0.05541 | 0.5854 ** | 0.06668 |
80 | 0.364 ** | 0.02702 | 0.3524 ** | 0.02975 |
100 | 0.21 ** | 0.01225 | 0.214 ** | 0.02687 |
Terahertz Spectroscopy Analysis of Paclitaxel Effect on HeLa Cells | |||||||
---|---|---|---|---|---|---|---|
Drug Concentration (nM) | 0 | 5 | 10 | 20 | 40 | 80 | 100 |
Frequency | 0 | 0.071 | 0.1016 | 0.1744 | 0.4146 | 0.6476 | 0.786 |
Standard Error | 0 | 0.02794 | 0.01878 | 0.03188 | 0.06668 | 0.02975 | 0.02687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chen, G.; Hao, Y.; Peng, Y. The Rapid Detection of Paclitaxel-Induced Changes in Cervical Cancer Cells Using an Ultrasensitive Biosensor. Photonics 2024, 11, 735. https://doi.org/10.3390/photonics11080735
Zhang L, Chen G, Hao Y, Peng Y. The Rapid Detection of Paclitaxel-Induced Changes in Cervical Cancer Cells Using an Ultrasensitive Biosensor. Photonics. 2024; 11(8):735. https://doi.org/10.3390/photonics11080735
Chicago/Turabian StyleZhang, Liwen, Gan Chen, Yating Hao, and Yan Peng. 2024. "The Rapid Detection of Paclitaxel-Induced Changes in Cervical Cancer Cells Using an Ultrasensitive Biosensor" Photonics 11, no. 8: 735. https://doi.org/10.3390/photonics11080735
APA StyleZhang, L., Chen, G., Hao, Y., & Peng, Y. (2024). The Rapid Detection of Paclitaxel-Induced Changes in Cervical Cancer Cells Using an Ultrasensitive Biosensor. Photonics, 11(8), 735. https://doi.org/10.3390/photonics11080735