The Correction of Keystone Distortion in Czerny–Turner Spectrometer Using Freeform Surface
Abstract
:1. Introduction
2. Theory
2.1. Smile and Keystone Distortion in Plane Grating Spectrometers
2.2. Design of the Freeform Surface
3. Design Example and Result Analysis
3.1. The Initial Optical System
3.2. The Final Optical System
3.3. Result Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Xia, G.; Wang, Y.; Zhou, S.; Li, Y.; Fang, F. Nitrogen dioxide detection using tandem integrating spheres as a gas absorption cell based on gas absorption spectroscopy. Appl. Opt. 2023, 62, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Antoine, P.; Mason, J.; Leese, M.; Hathi, B.; Stevens, A.H.; Dawson, D.; Gow, J.; Ringrose, T.; Holmes, J.; et al. NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 2—Design, manufacturing, and testing of the ultraviolet and visible channel. Appl. Opt. 2017, 56, 2771–2782. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Gao, L.; Feng, Z.-w.; Zhang, L.; Shi, W.-j.; Li, Y.-d. Combination of an optical waveguide platform and ultra-thin spectrometer that enables increased surface plasmon resonance sensor compactness. Opt. Express 2022, 30, 39679–39690. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, W.; Xu, H.; Qiu, L.; Wang, Y. Optical system design of aberration-corrected Czerny–Turner imaging spectrometer with high resolution. Opt. Commun. 2020, 459, 125015. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yu, K.; Zhang, J. Study on imaging spectrometer with smile and keystone eliminated. Opt. Commun. 2017, 387, 245–251. [Google Scholar] [CrossRef]
- Bakker, W.; van der Werff, H.; van der Meer, F. Determining smile and keystone of lab hyperspectral line cameras. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–5. [Google Scholar]
- Hong, J.; Kim, Y.; Choi, B.; Hwang, S.; Jeong, D.; Lee, J.H.; Kim, Y.; Kim, H. Efficient method to measure the spectral distortions using periodically distributed slit in hyperspectral imager. Opt. Express 2017, 25, 20340–20351. [Google Scholar] [CrossRef] [PubMed]
- Skauli, T. An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging. Opt. Express 2012, 20, 918–933. [Google Scholar] [CrossRef] [PubMed]
- Mouroulis, P. Compact infrared spectrometers. In Proceedings of the Infrared Technology and Applications XXXV, Orlando, FL, USA, 13–17 April 2009; pp. 52–61. [Google Scholar]
- Xue, Q.S. Astigmatism-corrected Czerny-Turner imaging spectrometer for broadband spectral simultaneity. Appl. Opt. 2011, 50, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhu, D.; Chen, Y.Y.; Guo, Z.Y.; Zuo, C.; Gao, Z.S. Comparative assessment of astigmatism-corrected Czerny-Turner imaging spectrometer using off-the-shelf optics. Opt. Commun. 2017, 388, 53–61. [Google Scholar] [CrossRef]
- Austin, D.R.; Witting, T.; Walmsley, I.A. Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors. Appl. Opt. 2009, 48, 3846–3853. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Xia, G.; Zhang, L.; Li, Y.; Shi, W.; Gao, L.; Lu, R. Advantages of multiple field of view spectrometer. Opt. Lasers Eng. 2023, 160, 107308. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H.; Zhang, Y.C.; Chen, S.Y.; Guo, P.; Wang, L.F. Optical design of a crossed Czerny-Turner spectrometer with a linear array photomultiplier tube. Appl. Opt. 2019, 58, 7789–7794. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Chen, H.; Zhang, Y.C.; Chen, S.Y.; Guo, P.; Tan, W.S.; Jiang, Y.R.; Li, X. Optical design of a reflective double-grating spectrometer to detect one branch in the pure rotational Raman spectrum of N2. Appl. Opt. 2023, 62, 4642–4649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Li, X.J.; Tang, X.Y. Study on a plane grating spectral imaging system with smile and keystone eliminated. J. Opt. Technol. 2022, 89, 262–268. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, Y.; Jin, G. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses. Opt. Commun. 2015, 338, 73–76. [Google Scholar] [CrossRef]
- Reimers, J.; Bauer, A.; Thompson, K.P.; Rolland, J.P. Freeform spectrometer enabling increased compactness. Light Sci. Appl. 2017, 6, e17026. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Feng, Z.; Zheng, Z.; Liang, R.; Benítez, P.; Miñano, J.C.; Duerr, F. Design of freeform illumination optics. Laser Photonics Rev. 2018, 12, 1700310. [Google Scholar] [CrossRef]
- Goodwin, B.; Fuchs, U.; Gangadhara, S.; Kiontke, S.; Smagley, V.; Yates, A. Design and Implementation of a New Freeform Surface Based on Chebyshev Polynomials. In Proceedings of the Imaging and Applied Optics 2015, Arlington, VA, USA, 7–11 June 2015. paper FT2B.3. [Google Scholar]
Parameters of Initial Spectrometer | Value |
---|---|
Spectral Range | 535–630 nm |
Object space NA | 0.11 |
LSC (the distance between the light source and collimating mirror) | 101.925 mm |
RC (radius of curvature of the collimating mirror) | 200.00 mm |
RF (radius of curvature of the focusing mirror) | 200.00 mm |
f1 (the distance between the collimating mirror and slit) | 101.825 mm |
f2 (the distance between the focusing mirror and image plane) | 86.365 mm |
θc (off-axis angles of the collimating mirror) | 10° |
θf (off-axis angles of the focusing mirror) | 22.3° |
G (groove spacing of the grating) | 1800 l/mm |
m (diffraction order) | 1 |
α (incident angle of the central wavelength on the grating) | 18.5° |
β (diffraction angle of the central wavelength on the grating) | 47° |
LCG (distance between the collimating mirror and grating) | 80.00 mm |
LGF (distance between the grating and focusing mirror) | 85.50 mm |
Parameters of Chebyshev Polynomial Surface | Value |
---|---|
Radius of curvature | Infinity |
Highest order of X | 2 |
Highest order of Y | 2 |
Normalized length of X and Y | 85 |
C(1,0) | 0 |
C(2,0) | 0 |
C(0,1) | 6.8014 × 10−5 |
C(1,1) | 0 |
C(2,1) | −1.4764 × 10−6 |
C(0,2) | −1.2499 × 10−3 |
C(1,2) | 0 |
C(2,2) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, G.; Yu, D.; Pan, Q.; Pan, Q.; Li, Y.; Chen, X. The Correction of Keystone Distortion in Czerny–Turner Spectrometer Using Freeform Surface. Photonics 2024, 11, 750. https://doi.org/10.3390/photonics11080750
Xia G, Yu D, Pan Q, Pan Q, Li Y, Chen X. The Correction of Keystone Distortion in Czerny–Turner Spectrometer Using Freeform Surface. Photonics. 2024; 11(8):750. https://doi.org/10.3390/photonics11080750
Chicago/Turabian StyleXia, Guo, Defeng Yu, Qingfa Pan, Qin Pan, Yanduo Li, and Xiaomeng Chen. 2024. "The Correction of Keystone Distortion in Czerny–Turner Spectrometer Using Freeform Surface" Photonics 11, no. 8: 750. https://doi.org/10.3390/photonics11080750
APA StyleXia, G., Yu, D., Pan, Q., Pan, Q., Li, Y., & Chen, X. (2024). The Correction of Keystone Distortion in Czerny–Turner Spectrometer Using Freeform Surface. Photonics, 11(8), 750. https://doi.org/10.3390/photonics11080750