Polarization Analysis of Vertically Etched Lithium Niobate-on-Insulator (LNOI) Devices
Abstract
:1. Introduction
2. Simulation
- Equal height and width of the waveguide;
- Geometrical asymmetry in the horizontal or vertical direction;
- Index asymmetry in the vertical direction;
- Asymmetry in the propagation direction (e.g., bends, tapers, etc.).
2.1. Mode Hybridization
2.2. Mode Crosstalk in Tapers
2.3. Mode Crosstalk in Euler Bends
3. Demonstration of Vertical Etching
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BOX | Buried oxide |
EBL | Electron beam lithography |
ED | Etching depth |
EO | Electro-optic |
LNOI | Lithium niobate-on-insulator |
qTE | Quasi-transverse electric |
qTM | Quasi-transverse magnetic |
SEM | Scanning Electron Microscope |
TK | Thickness |
TW | Top width |
References
- Chiles, J.; Fathpour, S. Silicon photonics beyond silicon-on-insulator. J. Opt. 2017, 19, 053001. [Google Scholar] [CrossRef]
- Chen, G.; Li, N.; Ng, J.D.; Lin, H.L.; Zhou, Y.; Fu, Y.H.; Lee, L.Y.T.; Yu, Y.; Liu, A.Q.; Danner, A.J. Advances in lithium niobate photonics: Development status and perspectives. Adv. Photonics 2022, 4, 034003. [Google Scholar] [CrossRef]
- Saravi, S.; Pertsch, T.; Setzpfandt, F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics. Adv. Opt. Mater. 2021, 9, 2100789. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Yuan, S.; Hu, C.; Pan, A.; Ding, Y.; Wang, X.; Qu, Z.; Wei, J.; Liu, Y.; Zeng, C.; Xia, J. Photonic devices based on thin-film lithium niobate on insulator. J. Semicond. 2021, 42, 041304. [Google Scholar] [CrossRef]
- You, B.; Yuan, S.; Tian, Y.; Zhang, H.; Zhu, X.; Mortensen, N.A.; Cheng, Y. Lithium niobate on insulator–fundamental opto-electronic properties and photonic device prospects. Nanophotonics 2024, 13, 3037–3057. [Google Scholar] [CrossRef]
- Kaufmann, F. Optimised Nanolithography and Etching of Lithium Niobate on Insulator for Photonic Integrated Circuits. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2023. [Google Scholar]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Shao, L.; Yu, M.; Maity, S.; Sinclair, N.; Zheng, L.; Chia, C.; Shams-Ansari, A.; Wang, C.; Zhang, M.; Lai, K.; et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 2019, 6, 1498–1505. [Google Scholar] [CrossRef]
- Xu, M.; He, M.; Zhang, H.; Jian, J.; Pan, Y.; Liu, X.; Chen, L.; Meng, X.; Chen, H.; Li, Z.; et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 2020, 11, 3911. [Google Scholar] [CrossRef]
- Wan, L.; Yang, Z.; Zhou, W.; Wen, M.; Feng, T.; Zeng, S.; Liu, D.; Li, H.; Pan, J.; Zhu, N.; et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl. 2022, 11, 145. [Google Scholar] [CrossRef]
- Vazimali, M.G.; Fathpour, S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 2022, 4, 034001. [Google Scholar] [CrossRef]
- McKenna, T.P.; Stokowski, H.S.; Ansari, V.; Mishra, J.; Jankowski, M.; Sarabalis, C.J.; Herrmann, J.F.; Langrock, C.; Fejer, M.M.; Safavi-Naeini, A.H. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 2022, 13, 4532. [Google Scholar] [CrossRef]
- Ling, J.; Staffa, J.; Wang, H.; Shen, B.; Chang, L.; Javid, U.A.; Wu, L.; Yuan, Z.; Lopez-Rios, R.; Li, M.; et al. Self-Injection Locked Frequency Conversion Laser. Laser Photonics Rev. 2023, 17, 2200663. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P. Study of Si-Ge-Sn based heterobipolar phototransistor (HPT) exploiting quantum confined Stark effect and Franz Keldysh effect with and without resonant cavity. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 106, 62–67. [Google Scholar] [CrossRef]
- Hsieh, Y.D.; Lin, J.H.; Soref, R.; Sun, G.; Cheng, H.H.; Chang, G.E. Electro-absorption modulation in GeSn alloys for wide-spectrum mid-infrared applications. Commun. Mater. 2021, 2, 40. [Google Scholar] [CrossRef]
- Somasiri, N.; Rahman, B.A. Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls. J. Light. Technol. 2003, 21, 54. [Google Scholar] [CrossRef]
- Kaushalram, A.; Hegde, G.; Talabattula, S. Mode hybridization analysis in thin film lithium niobate strip multimode waveguides. Sci. Rep. 2020, 10, 16692. [Google Scholar] [CrossRef]
- Dai, D. Advanced passive silicon photonic devices with asymmetric waveguide structures. Proc. IEEE 2018, 106, 2117–2143. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Y. Analysis of mode hybridization in tapered waveguides. IEEE Photonics Technol. Lett. 2015, 27, 2441–2444. [Google Scholar] [CrossRef]
- Sakai, A.; Fukazawa, T.; Baba, T. Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide. J. Light. Technol. 2004, 22, 520–525. [Google Scholar] [CrossRef]
- Pan, A.; Hu, C.; Zeng, C.; Xia, J. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express 2019, 27, 35659–35669. [Google Scholar] [CrossRef]
- Dai, D.; Bowers, J.E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express 2011, 19, 10940–10949. [Google Scholar] [CrossRef]
- Chen, D.; Xiao, X.; Wang, L.; Yu, Y.; Liu, W.; Yang, Q. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 2015, 23, 11152–11159. [Google Scholar] [CrossRef]
- Dai, D.; Zhang, M. Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls. Opt. Express 2015, 23, 32452–32464. [Google Scholar] [CrossRef]
- Abu-Elmaaty, B.E.; Shalaby, H.M. Highly efficient silicon mode converter and polarization rotator using a silicon-based hybrid plasmonic waveguide. J. Opt. Soc. Am. B 2023, 40, 2789–2795. [Google Scholar] [CrossRef]
- Xie, H.; Liu, Y.; Wang, S.; Wang, Y.; Yao, Y.; Song, Q.; Du, J.; He, Z.; Xu, K. Highly compact and efficient four-mode multiplexer based on pixelated waveguides. IEEE Photonics Technol. Lett. 2020, 32, 166–169. [Google Scholar] [CrossRef]
- Han, X.; Jiang, Y.; Frigg, A.; Xiao, H.; Zhang, P.; Nguyen, T.G.; Boes, A.; Yang, J.; Ren, G.; Su, Y.; et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform. Laser Photonics Rev. 2022, 16, 2100529. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Bogaerts, W.; Van Thourhout, D. Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement. Opt. Commun. 2011, 284, 2141–2144. [Google Scholar] [CrossRef]
- Sun, C.; Yu, Y.; Chen, G.; Zhang, X. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt. Lett. 2017, 42, 3004–3007. [Google Scholar] [CrossRef]
- Fujisawa, T.; Makino, S.; Sato, T.; Saitoh, K. Low-loss, compact, and fabrication-tolerant Si-wire 90 waveguide bend using clothoid and normal curves for large scale photonic integrated circuits. Opt. Express 2017, 25, 9150–9159. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, H.; Dai, D. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt. Express 2018, 26, 17680–17689. [Google Scholar] [CrossRef] [PubMed]
- Vogelbacher, F.; Nevlacsil, S.; Sagmeister, M.; Kraft, J.; Unterrainer, K.; Hainberger, R. Analysis of silicon nitride partial Euler waveguide bends. Opt. Express 2019, 27, 31394–31406. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.; Novick, A.; Rizzo, A.; Bergman, K. Universal CMOS-foundry compatible platform for ultra-low loss SOI waveguide bends. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Zhang, E.; Yang, S.; Zhang, L. General waveguide bend design based on cubic spline interpolation and inverse design. J. Light. Technol. 2024, 42, 4614–4625. [Google Scholar] [CrossRef]
- Chamorro-Posada, P. Silicon nitride bent asymmetric coupled waveguides with partial Euler bends. Photonics 2024, 11, 218. [Google Scholar] [CrossRef]
- Vermeulen, D.; Van Acoleyen, K.; Ghosh, S.; De Cort, W.; Yebo, N.A.; Hallynck, E.; De Vos, K.; Debackere, P.; Dumon, P.; Bogaerts, W.; et al. Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides. In Proceedings of the 15th European Conference on Integrated Optics (ECIO 2010), Cambridge, UK, 7–9 April 2010. [Google Scholar]
- Siew, S.Y.; Cheung, E.J.H.; Liang, H.; Bettiol, A.; Toyoda, N.; Alshehri, B.; Dogheche, E.; Danner, A.J. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening. Opt. Express 2018, 26, 4421–4430. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.; Moskalev, D.; Salgaeva, U.; Bulatova, A.; Krishtop, V.; Volyntsev, A.; Syuy, A. Reactive ion etching of x-cut LiNbO3 in an ICP/TCP system for the fabrication of an optical ridge waveguide. Appl. Sci. 2023, 13, 2097. [Google Scholar] [CrossRef]
- Zhuang, R.; He, J.; Qi, Y.; Li, Y. High-Q Thin-Film Lithium Niobate Microrings Fabricated with Wet Etching. Adv. Mater. 2023, 35, 2208113. [Google Scholar] [CrossRef]
- Chang, G.E.; Chang, S.W.; Chuang, S.L. Theory for n-type doped, tensile-strained Ge–SixGeySn1-x-y quantum-well lasers at telecom wavelength. Opt. Express 2009, 17, 11246–11258. [Google Scholar] [CrossRef]
- Ghosh, S.; Bansal, R.; Sun, G.; Soref, R.A.; Cheng, H.H.; Chang, G.E. Design and optimization of GeSn waveguide photodetectors for 2-μm band silicon photonics. Sensors 2022, 22, 3978. [Google Scholar] [CrossRef]
- Powers, P.E.; Haus, J.W. Fundamentals of Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Bakir, B.B.; De Gyves, A.V.; Orobtchouk, R.; Lyan, P.; Porzier, C.; Roman, A.; Fedeli, J.M. Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers. IEEE Photonics Technol. Lett. 2010, 22, 739–741. [Google Scholar]
- Hatori, N.; Shimizu, T.; Okano, M.; Ishizaka, M.; Yamamoto, T.; Urino, Y.; Mori, M.; Nakamura, T.; Arakawa, Y. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J. Light. Technol. 2014, 32, 1329–1336. [Google Scholar] [CrossRef]
- Krasnokutska, I.; Tambasco, J.L.J.; Peruzzo, A. Nanostructuring of LNOI for efficient edge coupling. Opt. Express 2019, 27, 16578–16585. [Google Scholar] [CrossRef]
- Shim, E.; Gil-Molina, A.; Westreich, O.; Dikmelik, Y.; Lascola, K.; Gaeta, A.L.; Lipson, M. Tunable single-mode chip-scale mid-infrared laser. Commun. Phys. 2021, 4, 268. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Y.; El-Fiky, E.; Xu, L.; Kumar, A.; Jaques, M.; Samani, A.; Carpentier, O.; Bernal, S.; Alam, M.S.; et al. Adiabatic coupler with design-intended splitting ratio. J. Light. Technol. 2019, 37, 6147–6155. [Google Scholar] [CrossRef]
- Nehra, R.; Sekine, R.; Ledezma, L.; Guo, Q.; Gray, R.M.; Roy, A.; Marandi, A. Few-cycle vacuum squeezing in nanophotonics. Science 2022, 377, 1333–1337. [Google Scholar] [CrossRef]
- Ledezma, L.; Roy, A.; Costa, L.; Sekine, R.; Gray, R.; Guo, Q.; Nehra, R.; Briggs, R.M.; Marandi, A. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv. 2023, 9, eadf9711. [Google Scholar] [CrossRef]
- Wang, J.; Bo, F.; Wan, S.; Li, W.; Gao, F.; Li, J.; Zhang, G.; Xu, J. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 2015, 23, 23072–23078. [Google Scholar] [CrossRef]
- Chauvet, M.; Henrot, F.; Bassignot, F.; Devaux, F.; Gauthier-Manuel, L.; Pêcheur, V.; Maillotte, H.; Dahmani, B. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon. J. Opt. 2016, 18, 085503. [Google Scholar] [CrossRef]
- Wolf, R.; Breunig, I.; Zappe, H.; Buse, K. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express 2017, 25, 29927–29933. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Moreira, P.; Taha, A.M.; Paredes, B.; Dahlem, M.S.; Khilo, A. Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides. Opt. Express 2018, 26, 31850–31860. [Google Scholar] [CrossRef]
- Cherchi, M.; Ylinen, S.; Harjanne, M.; Kapulainen, M.; Aalto, T. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Opt. Express 2013, 21, 17814–17823. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, M.; Ylinen, S.; Harjanne, M.; Kapulainen, M.; Vehmas, T.; Aalto, T. The Euler bend: Paving the way for high-density integration on micron-scale semiconductor platforms. Silicon Photonics IX SPIE 2014, 8990, 20–26. [Google Scholar]
- Lin, J.; Bo, F.; Cheng, Y.; Xu, J. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res. 2020, 8, 1910–1936. [Google Scholar] [CrossRef]
- Krasnokutska, I.; Tambasco, J.L.J.; Li, X.; Peruzzo, A. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express 2018, 26, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Burek, M.J.; Lin, Z.; Atikian, H.A.; Venkataraman, V.; Huang, I.C.; Stark, P.; Lončar, M. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express 2014, 22, 30924–30933. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Yang, L.; Xu, Y.; Tang, H.X. Parasitic conduction loss of lithium niobate on insulator platform. Appl. Phys. Lett. 2024, 124, 101107. [Google Scholar] [CrossRef]
- Zhou, J.X.; Gao, R.H.; Lin, J.; Wang, M.; Chu, W.; Li, W.B.; Yin, D.F.; Deng, L.; Fang, Z.W.; Zhang, J.H.; et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett. 2020, 37, 084201. [Google Scholar] [CrossRef]
- Hui, H.; Ricken, R.; Sohler, W. Etching of lithium niobate: From ridge waveguides to photonic crystal structures. In Proceedings of the ECIO’08 Eindhoven, Eindhoven, The Netherlands, 11–13 June 2008. [Google Scholar]
- Li, Y.; Lan, T.; Yang, D.; Xiang, M.; Dai, J.; Li, C.; Wang, Z. Research of selective etching in LiNbO3 using proton-exchanged wet etching technique. Mater. Res. Express 2020, 7, 056202. [Google Scholar] [CrossRef]
- You, J.; Wu, W.; Jin, C.; Qu, L.; Zhang, D.; Qi, J.; Cai, W.; Ren, M.; Xu, J. Raman characterization of focused ion beam fabricated lithium niobate film. J. Appl. Phys. 2024, 135, 033101. [Google Scholar] [CrossRef]
- Si, G.; Danner, A.J.; Teo, S.L.; Teo, E.J.; Teng, J.; Bettiol, A.A. Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling. J. Vac. Sci. Technol. B 2011, 29, 021205. [Google Scholar] [CrossRef]
- NanZhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd.—Product Development—Technical Services. Available online: https://www.citedrive.com/overleaf (accessed on 4 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liu, Y.; Qiu, J.; Ye, Z.; Guo, D.; Chen, M.; Yin, Z.; Tian, X.-H.; Liu, H.-Y.; Zhu, S.-N.; et al. Polarization Analysis of Vertically Etched Lithium Niobate-on-Insulator (LNOI) Devices. Photonics 2024, 11, 771. https://doi.org/10.3390/photonics11080771
Wang C, Liu Y, Qiu J, Ye Z, Guo D, Chen M, Yin Z, Tian X-H, Liu H-Y, Zhu S-N, et al. Polarization Analysis of Vertically Etched Lithium Niobate-on-Insulator (LNOI) Devices. Photonics. 2024; 11(8):771. https://doi.org/10.3390/photonics11080771
Chicago/Turabian StyleWang, Chenyu, Yuchen Liu, Jingyuan Qiu, Zhilin Ye, Dongjie Guo, Mengwen Chen, Zhijun Yin, Xiao-Hui Tian, Hua-Ying Liu, Shi-Ning Zhu, and et al. 2024. "Polarization Analysis of Vertically Etched Lithium Niobate-on-Insulator (LNOI) Devices" Photonics 11, no. 8: 771. https://doi.org/10.3390/photonics11080771
APA StyleWang, C., Liu, Y., Qiu, J., Ye, Z., Guo, D., Chen, M., Yin, Z., Tian, X. -H., Liu, H. -Y., Zhu, S. -N., & Xie, Z. (2024). Polarization Analysis of Vertically Etched Lithium Niobate-on-Insulator (LNOI) Devices. Photonics, 11(8), 771. https://doi.org/10.3390/photonics11080771