Recent Advances in Applications of Ultrafast Lasers
Abstract
:1. Introduction
2. Applications of Ultrafast Lasers in Microstructure Processing
2.1. Conventional Ultrafast Laser Processing
2.1.1. Drilling
2.1.2. Cutting
2.1.3. Surface Ablation
2.1.4. Nano Welding
2.2. Femtosecond Laser Direct Writing
2.2.1. Optical Waveguide
2.2.2. Nanodevices Based on Optical Waveguides
2.2.3. SPIDER
2.3. Nano Conductive Structure Processing
2.4. Processing and Applications of Microlens Array
2.4.1. Processing
2.4.2. Application: Snapshot Hyperspectral Imaging
3. Imaging and Precision Measurement
3.1. Remote Sensing
3.2. Microscopic Imaging
3.3. Spectral Analysis
4. Conclusions and Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Lei, S.; Zhao, X.; Yu, X. Ultrafast Laser Applications in Manufacturing Processes: A State-of-the-Art Review. J. Manuf. Sci. 2020, 142, 031005. [Google Scholar] [CrossRef]
- Nolte, S.; Schrempel, F.; Dausinger, F. Ultrashort Pulse Laser Technology. In Springer Series in Optical Sciences; Springer International Publishing: Cham, Switzerland, 2016; Volume 195, pp. 1–358. [Google Scholar]
- Maiman, T.H. Optical and microwave-optical experiments in ruby. Phys. Rev. Lett. 1960, 4, 564–566. [Google Scholar] [CrossRef]
- Shank, C.V.; Ippen, E.P.; Dienes, A. Passive mode locking of the cw dye laser. IEEE J. Quantum Electron. 1972, 213, 48–350. [Google Scholar] [CrossRef]
- DeMaria, A.J.; Stetser, D.A.; Heynau, H. Self Mode Locking of Lasers with Saturable Absorbers. Appl. Phys. Lett. 1966, 8, 174–176. [Google Scholar] [CrossRef]
- Shank, C.V.; Ippen, E.P. Subpicosecond Kilowatt Pulses from a Mode Locked cw Dye Laser. Appl. Phys. Lett. 1974, 24, 373–376. [Google Scholar] [CrossRef]
- Sugioka, K. Progress in ultrafast laser processing and future prospects. Nanophotonics 2017, 6, 393–413. [Google Scholar] [CrossRef]
- Sibbett, W.; Lagatsky, A.A.; Brown, C.T.A. The development and application of femtosecond laser systems. Opt. Express 2012, 20, 6989–7001. [Google Scholar] [CrossRef]
- Fork, R.L.; Cruz, C.H.B.; Becker, P.C. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 1987, 12, 483–485. [Google Scholar] [CrossRef]
- Johnson, L.F.; Dietz, R.E.; Guggenheim, H.J. Optical Maser Oscillation from Ni2+ in MgF2 Involving Simultaneous Emission of Phonons. Phys. Rev. Lett. 1963, 11, 318–320. [Google Scholar] [CrossRef]
- Walling, J.C.; Peterson, O.G.; Jenssen, H.P.; Morris, R.C.; O’Dell, E.W. Tunable alexandrite lasers. IEEE J. Quantum Electron. 1980, 16, 1302–1315. [Google Scholar] [CrossRef]
- Moulton, P.F. Spectroscopic and laser characteristics of Ti: Al2O3. J. Opt. Soc. Am. B 1986, 3, 125–133. [Google Scholar] [CrossRef]
- Jeff, H. Short story of laser development. Opt. Eng. 2010, 49, 091002. [Google Scholar]
- Rottke, H.; Wolff, B.; Tapernon, M. Resonant multiphoton ionization of xenon and atomic hydrogen in intense sub-ps-laser pulses. Lect. Notes Phys. 1989, 60, 565–568. [Google Scholar]
- Spence, D.E.; Kean, P.N.; Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti: Sapphire laser. Opt. Lett. 1991, 16, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Stingl, A.; Szipöcs, R.; Lenzner, M.; Spielmann, C.; Krausz, F. Sub-10-fs mirror-dispersion-controlled Ti: Sapphire laser. Opt. Lett. 1995, 20, 602–604. [Google Scholar] [CrossRef]
- Ell, R.; Morgner, U.; Kärtner, F.X.; Fujimoto, J.G.; Ippen, E.P.; Scheuer, V.; Angelow, G.; Tschudi, T.; Lederer, M.J.; Boiko, A.; et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: Sapphire laser. Opt. Lett. 2001, 26, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.H.; Zheng, L.; Meyerhofer, D.D. Propagation of light pulses in a chirped-pulse-amplification laser. IEEE J. Quantum Electron. 1993, 29, 270–280. [Google Scholar] [CrossRef]
- Yalisove, S.M.; Sugioka, K.; Grigoropoulos, C.P. Advances and Opportunities of Ultrafast Laser Synthesis and Processing. MRS Bull. 2016, 41, 955–959. [Google Scholar] [CrossRef]
- Matsuda, T.; Sano, T.; Arakawa, K.; Sakata, O.; Hirose, A. Femtosecond Laser-Driven Shock-Induced Dislocation Structures in Iron. Appl. Phys. Exp. 2014, 7, 122704. [Google Scholar] [CrossRef]
- Strickland, D.; Mourou, G. Compression of Amplified Chirped Optical Pulses. Opt. Commun. 1985, 56, 219–221. [Google Scholar] [CrossRef]
- Strickland, D. Nobel Lecture: Generating high-intensity ultrashort optical pulses. Rev. Mod. Phys. 2019, 91, 030502. [Google Scholar] [CrossRef]
- Dzhibladze, M.I.; Esiashvili, Z.G.; Teplitskiĭ, É.S.; Isaev, S.K.; Sagaradze, V.R. Mode locking in a fiber laser. Sov. J. Quantum Electron. 1983, 13, 245–247. [Google Scholar] [CrossRef]
- Chang, G.; Wei, Z. Ultrafast fiber lasers: An expanding versatile toolbox. Iscience 2020, 23, 101101. [Google Scholar] [CrossRef] [PubMed]
- Nisoli, M.; Silvestri, S.; Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 1996, 68, 2793–2795. [Google Scholar] [CrossRef]
- Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Kleineberg, U. Single-cycle nonlinear optics. Science 2008, 320, 1614–1617. [Google Scholar] [CrossRef]
- Brabec, T. Strong Field Laser Physics; Springer New York: New York, NY, USA, 2009; Volume 134. [Google Scholar]
- Jeong, J.; Cho, S.; Hwang, S.; Lee, B.; Yu, T.J. Modeling and Analysis of High-Power Ti: Sapphire Laser Amplifiers–A Review. Appl. Sci. 2019, 9, 2396. [Google Scholar] [CrossRef]
- Eidam, T.; Hanf, S.; Seise, E.; Tünnermann, A. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 2010, 35, 94–96. [Google Scholar] [CrossRef]
- Fei, T.; Zhai, S.; Zhang, J.; Wang, Z. High power λ~8.5 μm quantum cascade laser grown by MOCVD operating continuous wave up to 408 K. J. Semicond. 2021, 42, 112301. [Google Scholar] [CrossRef]
- Turner, G.W.; Manfra, M.J.; Choi, H.K.; Connors, M.K. MBE growth of high-power InAsSbInAlAsSb quantum-well diode lasers emitting at 3.5 μm. J. Cryst. Growth 1997, 175, 825–832. [Google Scholar] [CrossRef]
- Welch, D.F. A brief history of high-power semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1470–1477. [Google Scholar] [CrossRef]
- Solid-state laser developments: Diode-pumped YAG achieves 1 W CW. Laser Focus World 1987, 23, 40–42.
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-Type conduction in Mg-doped GaN treated with low-energy electron beam irradiation. Jpn. J. Appl. Phys. 1989, 28, L2112. [Google Scholar] [CrossRef]
- Akasaki, I. Key inventions in the history of nitride-based blue LED and LD. J. Cryst. Growth 2007, 300, 2–10. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Kiyoku, H. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Appl. Phys. Lett. 1996, 69, 4056–4058. [Google Scholar] [CrossRef]
- Nakamura, S.; Fasol, G.; Pearton, S.J. The Blue Laser Diode: The Complete Story; Springer: New York, NY, USA, 2000. [Google Scholar]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef]
- Iwai, H. Roadmap for 22 nm and beyond (invited paper). Microelectron. Eng. 2009, 86, 1520–1528. [Google Scholar] [CrossRef]
- Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of materials: A review. Adv. Opt. Photon. 2015, 7, 684–712. [Google Scholar] [CrossRef]
- Srinivasan, R.; Sutcliffe, E.; Braren, B. Ablation and etching of poly- methylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl. Phys. Lett. 1987, 51, 1285–1287. [Google Scholar] [CrossRef]
- Küper, S.; Stuke, M. Femtosecond UV excimer laser ablation. Appl. Phys. B 1987, 44, 199–204. [Google Scholar] [CrossRef]
- Küper, S.; Stuke, M. Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses. Appl. Phys. Lett. 1989, 54, 4–6. [Google Scholar] [CrossRef]
- Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729–1731. [Google Scholar] [CrossRef] [PubMed]
- Maruo, S.; Nakamura, O.; Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 1997, 22, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Hashida, M.; Fujita, M.; Tsukamoto, M.; Semerok, A.F. Femtosecond laser ablation of metals: Precise measurement and analytical model for crater profiles. Proc. SPIE 2003, 4830, 452–457. [Google Scholar]
- Costache, F.; Henyk, M.; Reif, J. Surface patterning on insulators upon femtosecond laser ablation. Appl. Surf. Sci. 2003, 208, 486–491. [Google Scholar] [CrossRef]
- Eversole, D.; Luk’yanchuk, B.; Ben-Yakar, A. Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres. Appl. Phys. A 2007, 89, 283–291. [Google Scholar] [CrossRef]
- Borowiec, A.; Haugen, H.K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 2003, 82, 4462–4464. [Google Scholar] [CrossRef]
- Atanasov, P.A.; Takada, H.; Nedyalkov, N.N.; Obara, M. Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton. Appl. Surf. Sci. 2007, 253, 8304–8308. [Google Scholar] [CrossRef]
- Arai, A.; Bovatsek, J.; Yoshino, F.; Liu, Z.; Cho, G.C.; Shah, L.; Fermann, M.E.; Uehara, Y. Fiber chirped pulse amplification system for micromachining. Proc. SPIE 2006, 6343, 226–237. [Google Scholar]
- Marchese, S.V.; Baer, C.R.E.; Suedmeyer, T.; Keller, U. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 2008, 16, 6397–6407. [Google Scholar] [CrossRef]
- Scott, T.F.; Kowalski, B.A.; Sullivan, A.C. Two-color single photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 2009, 324, 913–917. [Google Scholar] [CrossRef]
- Qiu, J. Femtosecond laser-induced microstructures in glasses and applications in micro-optics. Chem. Rec. 2004, 4, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hernandez, D.; Sanchez-Padilla, B.; Gailevičius, D.; Thodika, S.C.; Juodkazis, S.; Brasselet, E.; Malinauskas, M. Single-Step 3D Printing of Micro-Optics with Adjustable Refractive Index by Ultrafast Laser Nanolithography. Adv. Opt. Mater. 2023, 11, 2300258. [Google Scholar] [CrossRef]
- Bonse, J.; Krüger, J. Structuring of thin films by ultrashort laser pulses. Appl. Phys. A 2023, 129, 14. [Google Scholar] [CrossRef]
- Zhou, K.; Jia, X.; Jia, T.; Cheng, K.; Cao, K.; Zhang, S.; Feng, D.; Sun, Z. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging. J. Appl. Phys. 2017, 121, 104301. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Peng, Y. Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications. Opt. Laser Technol. 2022, 146, 107473. [Google Scholar] [CrossRef]
- Fang, C.; Long, T.T. Mapping structural dynamics of proteins with femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2020, 71, 239–265. [Google Scholar] [CrossRef]
- Haider, A.J.; Alawsi, T.; Haider, M.J.; Taha, B.A.; Marhoon, H.A. A comprehensive review on pulsed laser deposition technique to effective nanostructure production: Trends and challenges. Opt. Quantum Electron. 2022, 54, 488. [Google Scholar] [CrossRef]
- Lin, L.; Liu, L.; Musselman, K.; Zou, G.; Duley, W.W.; Zhou, Y.N. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory. Adv. Funct. Mater. 2016, 26, 5979–5986. [Google Scholar] [CrossRef]
- Li, Z.P.; Ye, J.T.; Huang, X.; Jiang, P.Y.; Cao, Y.; Hong, Y.; Yu, C.; Zhang, J.; Zhang, Q.; Peng, C.Z.; et al. Single-photon imaging over 200 km. Optica 2021, 8, 344–349. [Google Scholar] [CrossRef]
- Maciulaitis, J.; Deveikyte, M.; Rekstyte, S.; Bratchikov, M.; Darinskas, A. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 2015, 7, 015015. [Google Scholar] [CrossRef]
- Strakas, D.; Gutknecht, N. Erbium lasers in operative dentistry—A literature review. Lasers Dent. Sci. 2018, 2, 125–136. [Google Scholar] [CrossRef]
- Weber, R.; Graf, T. The challenges of productive materials processing with ultrafast lasers. Adv. Opt. Technol. 2021, 10, 239–245. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, G.; Bhuyan, M.; D’Amico, C.; Stoian, R. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams. Opt. Lett. 2018, 43, 2161–2164. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Choi, T.; Grigoropoulos, C. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl. Phys. A 2004, 79, 605–612. [Google Scholar] [CrossRef]
- Hao, T.; Yong, L.; Long, Z.; Baoquan, L. Mechanism design and process control of micro EDM for drilling spray holes of diesel injector nozzles. Precis. Eng. 2013, 37, 213–221. [Google Scholar]
- Price, C.; Hamzehloo, A.; Aleiferis, P.; Richardson, D. Numerical Modelling of Fuel Spray Formation and Collapse from Multi-Hole Injectors Under Flash-Boiling Conditions. Fuel 2018, 221, 518–541. [Google Scholar] [CrossRef]
- Subasi, L.; Gokler, M.I.; Yaman, U. A Process Modeling Approach for Micro Drilling of Aerospace Alloys with a Waterjet Guided Laser System. Opt. Laser Technol. 2022, 148, 107682. [Google Scholar] [CrossRef]
- Marimuthu, S.; Antar, M.; Dunleavey, J. Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy. Precis. Eng. 2019, 55, 339–348. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Abeln, T.; Radtke, J.; Dausinger, F. High Precision Drilling with Short-Pulsed Solid-State Lasers. Int. Laser Saf. Conf. 1999, 195–203. [Google Scholar]
- Li, Q.; Sun, X.; Zhao, W.; Hou, X.; Zhang, Y.; Zhao, F.; Li, X.; Mei, X. Processing of a Large-Scale Microporous Group on Copper Foil Current Collectors for Lithium Batteries Using Femtosecond Laser. Adv. Eng. Mater. 2020, 22, 2000710. [Google Scholar] [CrossRef]
- Lu, C.; Duan, W.; Wang, K.; Wang, R.; Tang, Z. Experiments of drilling micro-holes on superalloy with thermal barrier coatings by using femtosecond laser. Ferroelectrics 2020, 564, 37–51. [Google Scholar] [CrossRef]
- Jeong, B.; Lee, B.; Kim, J.H.; Choi, J.A.; Yang, J.; Sall, E.G.; Kim, J.W.; Heo, D.; Jang, J.; Kim, G.H.; et al. Drilling of sub-100 μm hourglass-shaped holes in diamond with femtosecond laser pulses. Quantum Electron. 2020, 50, 201. [Google Scholar] [CrossRef]
- Obata, K.; Kawabata, S.; Hanada, Y.; Miyaji, G.; Sugioka, K. High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses. Opto-Electron. Sci. 2024, 3, 230053. [Google Scholar] [CrossRef]
- Juodkazis, S.; Okuno, H.; Kujime, N.; Matsuo, S.; Misawa, H. Hole drilling in stainless steel and silicon by femtosecond pulses at low pressure. Appl. Phys. A 2004, 79, 1555–1559. [Google Scholar] [CrossRef]
- Laakso, M.; Pagliano, S.; Shah, U.; Mårtensson, G.; Stemme, G.; Niklaus, F. Water in contact with the backside of a silicon substrate enables drilling of high-quality holes through the substrate using ultrashort laser pulses. Opt. Express 2020, 28, 1394–1407. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Si, J.; Chen, T.; Chen, F.; Liang, S.; Wu, Z.; Hou, X. Alcohol-assisted photoetching of silicon carbide with a femtosecond laser. Opt. Commun. 2009, 282, 78–80. [Google Scholar] [CrossRef]
- Heng, H.Y.Z.; Wang, X.C.; Wang, Z.K. Laser dicing of silicon and electronic substrates. In Advances in Laser Materials Processing: Technology, Research, and Application; Woodhead Publishing: Amsterdam, The Netherlands, 2010; pp. 88–135. [Google Scholar]
- Yokotani, A.; Mukumoto, T.; Mizuno, T.; Kurosawa, K.; Kawahara, K.; Ninomiya, T.; Sawada, H. Development of dicing technique for thin semiconductor substrates with femtosecond laser ablation. Proc. SPIE 2004, 5339, 195–203. [Google Scholar]
- Ogawa, Y.; Ota, M.; Nakamoto, K.; Fukaya, T.; Russell, M.; Zohdi, T.I.; Yamazaki, K.; Aoyama, H. A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools. CIRP Ann. 2016, 65, 245–248. [Google Scholar] [CrossRef]
- Polikarpov, M.; Snigireva, I.; Morse, J.; Yunkin, V.; Kuznetsov, S.; Snigirev, A. Large-acceptance diamond planar refractive lenses manufactured by laser cutting. J. Synchrotron Rad. 2015, 22, 23–28. [Google Scholar] [CrossRef]
- Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.; Konov, V.I. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing. Appl. Phys. A 2016, 122, 152. [Google Scholar] [CrossRef]
- Yang, H.; Xu, K.; Xu, C.; Fan, D.; Cao, Y.; Xue, W.; Pang, J. Femtosecond Laser Fabricated Elastomeric Superhydrophobic Surface with Stretching-Enhanced Water Repellency. Nanoscale Res. Lett. 2019, 14, 333. [Google Scholar] [CrossRef]
- Hong, Z.; Wang, W.; Ma, Z.; Lu, M.; Pan, S.; Shi, E.; Chen, Z.; Zhang, C. Anti-icing ceramics surface induced by femtosecond laser. Ceram. Int. 2022, 48, 10236–10243. [Google Scholar] [CrossRef]
- Su, Y.; Chen, L.; Jiao, Y.; Zhang, J.; Li, C.; Zhang, Y.; Zhang, Y. Hierarchical Hydrophilic/Hydrophobic/Bumpy Janus Membrane Fabricated by Femtosecond Laser Ablation for Highly Efficient Fog Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 26542–26550. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cheng, Y.; Zhang, B.; Li, G.; Wang, D.; Yang, Y.; Zhang, Y.; Zhu, W.; Li, J.; Wu, D.; et al. Flexible Tri-switchable Wettability Surface for Versatile Droplet Manipulations. ACS Appl. Mater. Interfaces 2022, 14, 37248–37256. [Google Scholar] [CrossRef]
- Sher, M.-J.; Winkler, M.T.; Mazur, E. Pulsed-laser hyperdoping and surface texturing for photovoltaics. MRS Bull. 2011, 36, 439–445. [Google Scholar] [CrossRef]
- Lee, B.G.; Lin, Y.-T.; Sher, M.-J.; Mazur, E.; Branz, H.M. Light trapping for thin silicon solar cells by femtosecond laser texturing. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 001606–001608. [Google Scholar]
- Han, R.; Zhang, Y.; Jiang, Q.; Chen, L.; Cao, K.; Zhang, S.; Feng, D.; Sun, Z.; Jia, T. Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces1. Opto-Electron. Sci. 2024, 3, 230013. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, L.; Liu, J.; Zhang, Y.; Zhang, S.; Feng, D.; Jia, T.; Zhou, P.; Wang, Q.; Sun, Z.; et al. Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing. Opto-Electron. Sci. 2023, 2, 220002. [Google Scholar] [CrossRef]
- Stratakis, E.; Bonse, J.; Heitz, J.; Siegel, J.; Tsibidis, G.D.; Skoulas, E.; Papadopoulos, A.; Mimidis, A.; Joel, A.-C.; Comanns, P.; et al. Laser engineering of biomimetic surfaces. Mater. Sci. Eng. R Rep. 2020, 141, 100562. [Google Scholar] [CrossRef]
- Zhang, D.S.; Li, X.Z.; Fu, Y.; Yao, Q.H.; Li, Z.G.; Sugioka, K. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electron. Adv. 2022, 5, 210066. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Liu, K.; Cao, T.; Hong, M.H. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption. Opto-Electron. Adv. 2023, 6, 230029. [Google Scholar] [CrossRef]
- Huang, H.; Hu, A.; Peng, P. Femtosecond laser-induced microwelding of silver and copper. Appl. Opt. 2013, 52, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liu, L.; Peng, P.; Zou, G.; Duley, W.W.; Zhou, Y.N. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 2016, 27, 125201. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.L.; Lin, L.C.; Zou, G.S. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties. Appl. Phys. Lett. 2019, 115, 103101. [Google Scholar] [CrossRef]
- Lin, L.; Zou, G.; Liu, L.; Duley, W.W.; Zhou, Y.N. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units. Appl. Phys. Lett. 2016, 108, 203107. [Google Scholar] [CrossRef]
- Tan, Y.; Lv, H.; Xu, J.; Zhang, A.; Song, Y.; Yu, J.; Chen, W.; Wan, Y.; Liu, Z.; Liu, Z.; et al. Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses. Opto-Electron. Adv. 2023, 6, 230066. [Google Scholar] [CrossRef]
- Nasu, Y.; Kohtoku, M.; Hibino, Y. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Opt. Lett. 2005, 30, 723–725. [Google Scholar] [CrossRef]
- Nasu, Y.; Kohtoku, M.; Hibino, Y.; Inoue, Y. Three dimensional waveguide interconnection in planar lightwave circuits by direct writing with femtosecond laser. Jpn. J. Appl. Phys. 2005, 44, L1446–L1448. [Google Scholar] [CrossRef]
- Lindenmann, N.; Balthasar, G.; Hillerkuss, D.; Schmogrow, R.; Jordan, M.; Leuthold, J.; Freude, W.; Koos, C. Photonic wire bonding: A novel concept for chipscale interconnects. Opt. Express 2012, 20, 17667–17677. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; He, R.; Sun, S.; Vázquez de Aldana, J.R.; Chen, F. Femtosecond laser micromachined optical waveguides in LiTaO3 crystal. Phys. Status Solidi RRL 2013, 7, 1014–1017. [Google Scholar] [CrossRef]
- He, S.; Yang, Q.; Zhang, B.; Ren, Y.; Liu, H.; Wu, P.; Yao, Y.; Chen, F. A waveguide mode modulator based on femtosecond laser direct writing in KTN crystals. Results Phys. 2020, 18, 103307. [Google Scholar] [CrossRef]
- Chen, F.; de Aldana, J.R.V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014, 8, 251–275. [Google Scholar] [CrossRef]
- Minoshima, K.; Kowalevicz, A.M.; Hartl, I.; Ippen, E.P.; Fujimoto, J.G. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 2001, 26, 1516–1518. [Google Scholar] [CrossRef]
- Streltsov, A.M.; Borrelli, N.F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 2001, 26, 42–43. [Google Scholar] [CrossRef]
- Suzuki, K.; Sharma, V.; Fujimoto, J.G.; Ippen, E.P.; Nasu, Y. Characterization of symmetric [3×3]directional couplers fabricated by direct writing with a femtosecond laser oscillator. Opt. Express 2006, 14, 2335–2343. [Google Scholar] [CrossRef]
- Skryabin, N.; Kalinkin, A.; Dyakonov, I.; Kulik, S. Femtosecond laser written depressed-cladding waveguide 2 × 2, 1 × 2 and 3 × 3 directional couplers in Tm3+: YAG crystal. Micromachines 2019, 11, 1. [Google Scholar] [CrossRef]
- Pospiech, M.; Emons, M.; Steinmann, A.; Palmer, G.; Osellame, R.; Bellini, N.; Cerullo, G.; Morgner, U. Double waveguide couplers produced by simultaneous femtosecond writing. Opt. Express 2009, 17, 3555–3563. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.D.; Politi, A.; Matthews, J.C.F.; Dekker, P.; Ams, M.; Withford, M.J.; O’Brien, J.L. Laser written waveguide photonic quantum circuits. Opt. Express 2009, 17, 12546–12554. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.S.; Almeida, J.M.; Almeida, G.F.; Cardoso, M.R.; De Boni, L.; Mendonça, C.R. Ultrafast laser pulses for structuring materials at micro/nano scale: From waveguides to superhydrophobic surfaces. Photonics 2017, 4, 8. [Google Scholar] [CrossRef]
- Homoelle, D.; Wielandy, S.; Gaeta, A.L.; Borrelli, N.F.; Smith, C. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 1999, 24, 1311–1313. [Google Scholar] [CrossRef]
- Cheng, C.; Romero, C.; de Aldana, J.R.V.; Chen, F. Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal. Opt. Eng. 2015, 54, 067113. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Xing, H.; Romero, C.; de Aldana, J.R.V.; Chen, F. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal. Opt. Laser Technol. 2018, 103, 82–88. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Chang, S.; Flueraru, C.; Grover, C.P. Directly writing of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser. Opt. Commun. 2005, 253, 315–319. [Google Scholar] [CrossRef]
- Lv, J.; Cheng, Y.; Yuan, W.; Hao, X.; Chen, F. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt. Mater. Express 2015, 5, 1274–1280. [Google Scholar] [CrossRef]
- Lv, J.; Cheng, Y.; de Aldana, J.R.V.; Hao, X.; Chen, F. Femtosecond Laser Writing of Optical-Lattice-Like Cladding Structures for Three-Dimensional Waveguide Beam Splitters in LiNbO3 Crystal. J. Light. Technol. 2016, 34, 3587–3591. [Google Scholar] [CrossRef]
- Ajates, J.G.; de Aldana, J.R.V.; Chen, F.; Ródenas, A. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt. Mater. Express 2018, 8, 1890–1901. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Yang, Q.; Ren, Y. Ultrafast laser fabrication of efficient polarization-insensitive demultiplexer circuit in YAG crystal. Opt. Express 2023, 31, 24760–24767. [Google Scholar] [CrossRef]
- Duncan, A.; Kendrick, R.; Thurman, S.; Wuchenich, D.; Scott, R.P.; Yoo, S.J.B.; Proiett, R. SPIDER: Next generation chip scale imaging sensor. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, Hawii, 15–18 September 2015; p. 27. [Google Scholar]
- Su, T.; Scott, R.P.; Ogden, C.; Thurman, S.T.; Kendrick, R.L.; Duncan, A.; Yoo, S.J.B. Experimental demonstration of interferometric imaging using photonic integrated circuits. Opt. Express 2017, 25, 12653–12665. [Google Scholar] [CrossRef]
- Badham, K.; Kendrick, R.L.; Wuchenich, D.; Ogden, C.; Chriqui, G.; Duncan, A.; Thurman, S.T.; Yoo, S.J.B.; Su, T.; Lai, W.; et al. Photonic integrated circuit-based imaging system for SPIDER. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017; pp. 1–5. [Google Scholar]
- Thiébaut, É.; Giovannelli, J.F. Image reconstruction in optical interferometry. IEEE Signal Process. Mag. 2010, 27, 97–109. [Google Scholar] [CrossRef]
- Liu, G.; Wen, D.S.; Song, Z.X. System design of an optical interferometer based on compressive sensing. Mon. Not. R. Astron. Soc. 2018, 478, 2065–2073. [Google Scholar] [CrossRef]
- Song, X.; Zuo, Y.; Zeng, T.; Si, B.; Hong, X.; Wu, J. Structural design of an improved SPIDER optical system based on a multimode interference coupler. Opt. Express 2023, 31, 33704–33718. [Google Scholar] [CrossRef] [PubMed]
- Richard, L.; Kendrick, R.L.; Duncan, A.; Ogden, C.; Wilm, J.; Stubbs, D.M.; Thurman, S.T.; Yoo, S.J.B. Flat-panel space-based space surveillance sensor. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 10–13 September 2013; p. 9. [Google Scholar]
- Ogden, C.; Chriqui, G.; Thurman, S.T.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S.J.B. Testbed experiment for SPIDER: A photonic integrated circuit-based interferometric imaging system. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Wailea, Maui, Hawaii, 19–22 September 2017. [Google Scholar]
- Su, T.; Liu, G.; Badham, K.E.; Thurman, S.T.; Kendrick, R.L.; Duncan, A.; Wuchenich, D.; Ogden, C.; Chriqui, G.; Feng, S.; et al. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager. Opt. Express 2018, 26, 12801–12812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ma, H.; Huang, K. Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System. Curr. Opt. Photonics 2021, 5, 606–616. [Google Scholar]
- Liu, G.; Wen, D.; Song, Z.; Jiang, T. System design of an optical interferometer based on compressive sensing: An update. Opt. Express 2020, 28, 19349–19361. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Zhang, Y.L.; Wang, J.N.; Wang, L.; Xia, H.; Chen, Q.D.; Ding, H.; Sun, H.B. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing. Sci. Technol. Adv. Mater. 2015, 16, 024805. [Google Scholar] [CrossRef]
- Tanaka, T.; Ishikawa, A.; Kawata, S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 2006, 88, 081107. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, X.; Li, M.; Xu, M.; Long, J. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles. Opt. Express 2021, 29, 4453–4463. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.-D.; Niu, L.-G.; Jiao, J.; Xia, H.; Song, J.-F.; Sun, H.-B. 100% Fill-Factor Aspheric Microlens Arrays (AMLA) with Sub-20-nm Precision. IEEE Photon. Technol. Lett. 2009, 21, 1535–1537. [Google Scholar] [CrossRef]
- Lin, J.; Kan, Y.; Jing, X.; Lu, M. Design and Fabrication of a Three-Dimensional Artificial Compound Eye Using Two-Photon Polymerization. Micromachines 2018, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Q.; Yu, L.; Chen, Q.-D.; Cao, L.; Bai, B.-F.; Sun, H.-B. Sapphire Concave Microlens Arrays for High-Fluence Pulsed Laser Homogenization. IEEE Photon. Technol. Lett. 2019, 31, 1615–1618. [Google Scholar] [CrossRef]
- Qin, B.; Li, X.; Yao, Z.; Huang, J.; Liu, Y.; Wang, A.; Gao, S.; Zhou, S.; Wang, Z. Fabrication of Microlenses with Continuously Variable Numerical Aperture through a Temporally Shaped Femtosecond Laser. Opt. Express 2021, 29, 4596–4606. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-C.; Hu, X.-Y.; Zhang, Y.-L.; Liu, X.-Q.; Hou, Z.-S.; Niu, L.-G.; Zhu, L.; Han, B.; Chen, Q.-D.; Sun, H.-B. Smart Compound Eyes Enable Tunable Imaging. Adv. Funct. Mater. 2019, 29, 1903340. [Google Scholar] [CrossRef]
- Hu, Y.L.; Rao, S.L.; Wu, S.Z.; Wei, P.F.; Qiu, W.X.; Wu, D.; Xu, B.; Ni, J.C.; Yang, L.; Li, J.W.; et al. All-Glass 3D Optofluidic Microchip with Built-in Tunable Microlens Fabricated by Femtosecond Laser-Assisted Etching. Adv. Opt. Mater. 2018, 6, 1701299. [Google Scholar] [CrossRef]
- Su, L.; Zhou, Z.; Yuan, Y.; Hu, L.; Zhang, S. A snapshot light field imaging spectrometer. Optik 2015, 126, 877–881. [Google Scholar] [CrossRef]
- Dwight, J.G.; Tkaczyk, T.S. Lenslet array tunable snapshot imaging spectrometer (LAATIS) for hyperspectral fluorescence microscopy. Biomed. Opt. Express 2017, 8, 1950–1964. [Google Scholar] [CrossRef]
- Yu, C.; Yang, J.; Song, N.; Sun, C.; Wang, M.; Feng, S. Microlens array snapshot hyperspectral microscopy system for the biomedical domain. Appl. Opt. 2021, 60, 1896–1902. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Ren, H.; Fan, K.; Li, D. Snapshot imaging spectrometer based on a microlens array. Chin. Opt. Lett. 2019, 17, 011101. [Google Scholar] [CrossRef]
- Chin, S.L.; Wang, T.-J.; Marceau, C.; Wu, J.; Liu, J.S.; Kosareva, O.; Panov, N.; Chen, Y.P.; Daigle, J.-F.; Yuan, S.; et al. Advances in intense femtosecond laser filamentation in air. Laser Phys. 2012, 22, 1–53. [Google Scholar] [CrossRef]
- Chin, S.L.; Xu, H.L.; Luo, Q.; Théberge, F.; Liu, W.; Daigle, J.F.; Kamali, Y.; Simard, P.T.; Bernhardt, J.; Hosseini, S.A.; et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source. Appl. Phys. B 2009, 95, 1–12. [Google Scholar] [CrossRef]
- Kasparian, J.; Rodríguez, M.; Méjean, G.; Yu, J.; Salmon, E.; Wille, H.; Bourayou, R.; Frey, S.; André, Y.B.; Mysyrowicz, A.; et al. White-light filaments for atmospheric analysis. Science 2003, 301, 61–64. [Google Scholar] [CrossRef]
- Bourayou, R.; Méjean, G.; Kasparian, J.; Rodriguez, M.; Salmon, E.; Yu, J.; Lehmann, H.; Stecklum, B.; Laux, U.; Eislöffel, J.; et al. White-light filaments for multiparameter analysis of cloud microphysics. J. Opt. Soc. Am. B 2005, 22, 369–377. [Google Scholar] [CrossRef]
- Li, Z.-P.; Huang, X.; Cao, Y.; Wang, B.; Li, Y.-H.; Jin, W.; Yu, C.; Zhang, J.; Zhang, Q.; Peng, C.-Z.; et al. Single-photon computational 3D imaging at 45 km. Photon. Res. 2020, 8, 1532–1540. [Google Scholar] [CrossRef]
- Liu, X.; Shi, J.; Sun, L.; Li, Y.; Fan, J.; Zeng, G. Photon-limited single-pixel imaging. Opt. Express 2020, 28, 8132–8144. [Google Scholar] [CrossRef] [PubMed]
- Massaro, E.S.; Hill, A.H.; Grumstrup, E.M. Super-resolution structured pump–probe microscopy. Acs Photonics 2016, 3, 501–506. [Google Scholar] [CrossRef]
- Xu, J.; Min, C.; Zhang, Y.L.; Ni, J.; Cao, G.; Wei, Q.; Yang, J.; Yuan, X. Imaging ultrafast evolution of subwavelength-sized topography using single-probe structured light microscopy. Photonics Res. 2022, 10, 1900. [Google Scholar] [CrossRef]
- Barwick, B.; Flannigan, D.; Zewail, A. Photon-induced near-field electron microscopy. Nature 2009, 462, 902–906. [Google Scholar] [CrossRef]
- Dabrowski, M.; Dai, Y.; Petek, H. Ultrafast photoemission electron microscopy: Imaging plasmons in space and time. Chem. Rev. 2020, 120, 6247–6287. [Google Scholar] [CrossRef] [PubMed]
- Sternbach, A.J.; Latini, S.; Chae, S.; Hübener, H.; De Giovannini, U.; Shao, Y.; Xiong, L.; Sun, Z.; Shi, N.; Kissin, P.; et al. Femtosecond exciton dynamics in WSe2 optical waveguides. Nat. Commun. 2020, 11, 3567. [Google Scholar] [CrossRef]
- Kravtsov, V.; Ulbricht, R.; Atkin, J.M.; Raschke, M.B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotech 2016, 11, 459–464. [Google Scholar] [CrossRef]
- Terada, Y.; Yoshida, S.; Takeuchi, O.; Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nat. Photon 2010, 4, 869–874. [Google Scholar] [CrossRef]
- Labutin, T.A.; Lednev, V.N.; Ilyin, A.A.; Popov, A.M. Femtosecond laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2016, 31, 90–118. [Google Scholar] [CrossRef]
- Fortes, F.J.; Moros, J.; Lucena, P.; Cabalín, L.M.; Laserna, J.J. Laser-induced breakdown spectroscopy. Anal. Chem. 2013, 8, 640–669. [Google Scholar] [CrossRef] [PubMed]
- Kotzagianni, M.; Couris, S. Femtosecond laser induced breakdown spectroscopy of air–methane mixtures. Chem. Phys. Lett. 2013, 561–562, 36–41. [Google Scholar] [CrossRef]
- Elhassan, A.; Giakoumaki, A.; Anglos, D.; Harith, M.A. Semi Quantitative Analysis of Euro Coins Via Femtosecond LIBS Technique. AIP Conf. Proc. 2009, 1172, 81–84. [Google Scholar]
- Hou, H.; Chan, G.C.Y.; Mao, X.; Zorba, V.; Zheng, R.; Russo, R.E. Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis. Anal. Chem. 2015, 87, 4788–4796. [Google Scholar] [CrossRef]
- Banerjee, S.P.; Chen, Z.; Fedosejevs, R. High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy. Opt. Lasers Eng. 2015, 68, 1–6. [Google Scholar] [CrossRef]
- Baudelet, M.; Yu, J.; Bossu, M.; Jovelet, J.; Wolf, J.-P.; Amodeo, T.; Fréjafon, E.; Laloi, P. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy. Appl. Phys. Lett. 2006, 89, 163903. [Google Scholar] [CrossRef]
Application of Cutting | Wavelength | Pulse Width | Repetition Rate | Pulse Energy | Scanning Speed |
---|---|---|---|---|---|
Ball end mill cutting [83] | 1045 nm | 350 fs | 200 kHz | <50 μJ | >1 m/s |
X-ray diamond lens cutting [85] | 1030 nm | 400 fs | 200 kHz | 20 W | 0.1 mm/s |
Type of Surface Ablation | Wavelength | Pulse Width | Repetition Rate | Pulse Energy | Scanning Speed |
---|---|---|---|---|---|
Superhydrophobic silicone rubber surface [86] | 800 nm | 100 fs | 1 kHz | 136.2 J/cm2 | 2 mm/s |
Superhydrophobic ceramic surface [87] | 800 nm | 100 fs | 1 kHz | 17–23 mW | 1 mm/s |
Fog water collection surface [88] | 800 nm | 104 fs | 1 kHz | / | / |
Triple wettable surface [89] | 800 nm | 104 fs | 1 kHz | 200 mW | 30 mm/s |
Surface-textured solar cells [90] | / | 600 fs | / | 8 kJ/m2 | / |
Thin-film textured silicon solar cells [91] | 800 nm | / | / | 4 kJ/m2 | / |
Large-area periodic nanowire structures [93] | 1030 nm | 190 fs | 1 kHz | 1 mJ | 3 mm/s |
Circular and crisscross LIPSS [95] | 1045 nm | 457 fs | 100 kHz | 50–700 mW | 0.5–1 mm/s |
Microsphere focusing ablation [96] | 800 nm | / | 76 MHz | 0.38 mJ/cm2 | 100 μm/s |
Type of Nano Welding | Pulse Width | Pulse Energy | Pulse Number /Irradiation Time |
---|---|---|---|
Ag nanowire and the Cu substrate [97] | 35 fs | 1.02 J/cm2 | 500–2000 pulses |
Ag-Ag nanowires [98] | 35 fs | ~90 mJ/cm2 | 9–10 s |
ZnO-ZnO nanowires [99] | 35 fs | 77.6 mJ/cm2 | 30 s |
Ag-TiO2 nanowires [100] | 50 fs | 17.5 mJ/cm2 | 10 s |
Au nanowires and TiO2 sinkers [61] | <50 fs | 18.3–21.5 mJ/cm2 | 5 s |
Type of Waveguide | Wavelength | Pulse Width | Repetition Rate | Pulse Energy | Scanning Speed |
---|---|---|---|---|---|
Simultaneous spatiotemporal focusing FsLDW [101] | 1030 nm | / | 10 kHz | 6.2–9.5 μJ | 200 μm/s |
2D waveguide [102] | 775 nm | 150 fs | 1 kHz | 182 nJ | 10 μm/s |
3D waveguide [103] | 775 nm | 150 fs | 1 kHz | 48 mW | / |
Photonic wires [104] | 780 nm | 150 fs | 100 MHz | / | / |
LiTaO3 crystal cladding and dual-line waveguides [105] | 800 nm | 120 fs | 1 kHz | 2.9 μJ | 20–500 μm/s |
KTN crystal dual-line waveguides [106] | 1030 nm | 400 fs | 25 kHz | 1.40 μJ | 500 μm/s |
Type of FsLDW Nanodevices | Wavelength | Pulse Width | Repetition Rate | Pulse Energy | Scanning Speed |
---|---|---|---|---|---|
X-shaped waveguide coupler [108] | 800 nm | 80 fs | 4 MHz | 20 nJ | 10 mm/s |
Directional waveguide coupler [109] | 400 nm | 25 fs | 80 MHz | 2.8 nJ | 3–10 μm/s |
3 × 3 directional coupler [110] | / | 67 fs | 5.85 MHz | 200 mW | 8 mm/s |
2 × 2, 1 × 2 and 3 × 3 directional couplers [111] | 1030 nm | 240 fs | 1 MHz | 450 nJ | 1 mm/s |
Waveguide coupler created by SLM [112] | / | 420 fs | 1 MHz | 1.6 μJ | 0.1–1 mm/s |
Quantum directional coupler [113] | 800 nm | 120 fs | 1 kHz | / | / |
Y beam splitter in silica [115] | 820 nm | 60 fs | 1 kHz | 1 μJ | 30 μm/s |
1:1 beam splitters in lithium tantalate crystal [116] | 795 nm | 120 fs | 1 kHz | 0.4 μJ | 0.5 mm/s |
1:1 beam splitters in sapphire crystal [117] | 795 nm | 120 fs | 1 kHz | 1.2 μJ | 0.5 mm/s |
1 × 2, 1 × 4, and 1 × 8 beam splitters [118] | 800 nm | 125 fs | 150 kHz | 52 mW | 50 μm/s |
1 × 2 and 1 × 4 beam splitters in lithium niobate crystals [119] | 1031 nm | 420 fs | 5 kHz | 4.9 μJ | 4 mm/s |
Uniformly split 1 × 2 and 1 × 3 beam splitters in lithium niobate crystals [120] | 795 nm | 120 fs | 1 kHz | 2 μJ | 750 μm/s |
3D waveguide beam splitters [121] | 795 nm | ~120 fs | 1 kHz | 1.9 μJ | 0.35 mm/s |
Polarization-insensitive demultiplexer [122] | 800 nm | 90 fs | 1 kHz | 0.28 μJ | 0.6 mm/s |
Type of Nano Conductive Structure Processing | Wavelength | Pulse Width | Repetition Rate | Pulse Energy | Scanning Speed |
---|---|---|---|---|---|
Photodynamic organization [134] | 800 nm | 120 fs | / | / | / |
Multiphoton reduction [135] | 800 nm | 80 fs | 80 MHz | 18.8–29.8 mW | / |
Femtosecond laser sintering [136] | 1030 nm | 100 fs | 76 MHz | 0.17 nJ | 5 mm/s |
Type of Microlens Arrays | Wavelength | Pulse Width | Repetition Rate | Pulse Energy | Irradiation Time |
---|---|---|---|---|---|
100% fill-factor microlens arrays [137] | 790 nm | 120 fs | 80 MHz | 6 mW | / |
3D curved compound-eye structure [138] | 800 nm | 100 fs | 80 MHz | 48 mW | / |
Sapphire concave microlens arrays [139] | 343 nm | 290 fs | 200 kHz | 8 μJ | 3.2 h |
Chemical processing [140] | 800 nm | 35 fs | 1 kHz | 1.5 | 2 h |
Tunable albumin microlens arrays [141] | 800 nm | 120 fs | 80 MHz | 7–20 mW | 500–1000 μs/voxel |
Tunable microfluidic microlens arrays [142] | 1045 nm | 360 fs | 200 kHz | 5 mW | 65 s/microlens |
Application | Wavelength | Pulse Width | Repetition Rate | Pulse Energy |
---|---|---|---|---|
Gas composition detection [149] | 800 nm | 70 fs | 10 Hz | 350 mJ |
45 km remote sensing imaging [151] | 1550 nm | 500 ps | 100 kHz | 120 mW |
201.5 km remote sensing imaging [62] | 1550 nm | 600 ps | 500 kHz | 600 mW |
Sensing by a single-pixel camera [152] | 532 nm | 100 ps | 10 kHz | / |
Type of Microscope | Wavelength | Pulse Width | Repetition Rate | Pulse Energy |
---|---|---|---|---|
High-NA microscope [57] | 800 nm | 50 fs | 100 Hz | 3.5 mJ |
Structured light pump–probe microscope [153] | 800 nm | 90 fs | 79 MHz | 23 pJ (after conversion) |
Fourier-transform wide-field spatiotemporal microscope [154] | 800 nm | 120 fs | 10 Hz | 3 mJ |
Photon-induced near-field electron microscopy [155] | 1038 nm | 220 fs | 500 kHz | 14 mJ/cm2 |
Application of fs-LIBS | Wavelength | Pulse Width | Repetition Rate | Pulse Energy |
---|---|---|---|---|
Gas composition detection [162] | 800 nm | 100 fs | 10 Hz | 5.2 mJ |
Element detection [163] | 248 nm | 500 fs | / | 13.5 mJ |
Isotope analysis [164] | 343 nm | 500 fs | 1 kHz | 160 μJ |
Accurate thickness measurement [165] | 266 nm | 170 fs | 1 kHz | / |
Microbiological discrimination [166] | 810 nm | 120 fs | / | 3.8 mJ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Wang, W.; Liu, P.; Zhang, Y.; Zhao, X.; Li, J.; Xiao, M.; Wang, Y.; Li, J.; Shao, X. Recent Advances in Applications of Ultrafast Lasers. Photonics 2024, 11, 857. https://doi.org/10.3390/photonics11090857
Niu S, Wang W, Liu P, Zhang Y, Zhao X, Li J, Xiao M, Wang Y, Li J, Shao X. Recent Advances in Applications of Ultrafast Lasers. Photonics. 2024; 11(9):857. https://doi.org/10.3390/photonics11090857
Chicago/Turabian StyleNiu, Sibo, Wenwen Wang, Pan Liu, Yiheng Zhang, Xiaoming Zhao, Jibo Li, Maosen Xiao, Yuzhi Wang, Jing Li, and Xiaopeng Shao. 2024. "Recent Advances in Applications of Ultrafast Lasers" Photonics 11, no. 9: 857. https://doi.org/10.3390/photonics11090857
APA StyleNiu, S., Wang, W., Liu, P., Zhang, Y., Zhao, X., Li, J., Xiao, M., Wang, Y., Li, J., & Shao, X. (2024). Recent Advances in Applications of Ultrafast Lasers. Photonics, 11(9), 857. https://doi.org/10.3390/photonics11090857