Advances in High-Efficiency Blue OLED Materials
Abstract
:1. Introduction
2. Performance of Blue OLEDs
2.1. Blue OLED Materials
2.2. Performance Metrics
3. High-Efficiency Blue OLED Materials
3.1. High-Efficiency Fluorescent Materials
3.2. High-Efficiency Phosphorescent Materials
3.3. High-Efficiency TADF Materials
4. Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Kosai, S.; Badin, A.B.; Qiu, Y.; Matsubae, K.; Suh, S.; Yamasue, E. Evaluation of resource use in the household lighting sector in Malaysia considering land disturbances through mining activities. Resour. Conserv. Recycl. 2021, 166, 105343. [Google Scholar] [CrossRef]
- Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sustain. Energy Rev. 2020, 133, 110043. [Google Scholar] [CrossRef]
- Nayak, D.; Choudhary, R.B. A survey of the structure, fabrication, and characterization of advanced organic light emitting diodes. Microelectron. Reliab. 2023, 144, 114959. [Google Scholar] [CrossRef]
- Takahashi, Y.; Furuki, Y.; Yoshida, S.; Otani, T.; Muto, M.; Suga, Y.; Ito, Y. 29.1: A New Achromatic Quarter-Wave Film Using Liquid-Crystal Materials for Anti-Reflection of OLEDs. Dig. Tech. Pap. SID Int. Symp. 2014, 45, 381–384. [Google Scholar] [CrossRef]
- Cinquino, M.; Prontera, C.T.; Pugliese, M.; Giannuzzi, R.; Taurino, D.; Gigli, G.; Maiorano, V. Light-emitting textiles: Device architectures, working principles, and applications. Micromachines 2021, 12, 652. [Google Scholar] [CrossRef]
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Bräse, S. A brief history of OLEDs—Emitter development and industry milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef]
- Huang, Y.; Hsiang, E.L.; Deng, M.Y.; Wu, S.T. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, J.Y.; Baek, G.W.; Kwak, J.; Park, J.H. Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. J. Inf. Disp. 2022, 23, 1–17. [Google Scholar] [CrossRef]
- Murawski, C.; Gather, M.C. Emerging biomedical applications of organic light-emitting diodes. Adv. Opt. Mater. 2021, 9, 2100269. [Google Scholar] [CrossRef]
- Song, J.; Lee, H.; Jeong, E.G.; Choi, K.C.; Yoo, S. Organic light-emitting diodes: Pushing toward the limits and beyond. Adv. Mater. 2020, 32, 1907539. [Google Scholar] [CrossRef] [PubMed]
- Matarèse, B.F.E. Embryonic development of fully biocompatible organic light-emitting diodes. In Proceedings of the 2021 IEEE 21st International Conference on Nanotechnology (NANO), Montréal, QC, Canada, 28–30 July 2021. [Google Scholar]
- Kim, D.; Yokota, T.; Suzuki, T.; Lee, S.; Woo, T.; Yukita, W.; Koizumi, M.; Tachibana, Y.; Yawo, H.; Onodera, H. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. USA 2020, 117, 21138–21146. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.; Kumar, S.; Tsai, Y.F.; Gautam, P.; Shahnawaz; Kesavan, K.; Lin, J.T.; Khai, L.; Chou, K.H.; Choudhury, A. Status and challenges of blue OLEDs: A review. Nanomaterials 2023, 13, 2521. [Google Scholar] [CrossRef] [PubMed]
- Kagatikar, S.; Sunil, D. A systematic review on 1, 8-naphthalimide derivatives as emissive materials in organic light-emitting diodes. J. Mater. Sci. 2022, 57, 105–139. [Google Scholar] [CrossRef]
- Xie, M.; Sun, M.; Xue, S.; Yang, W. Recent progress of blue fluorescent organic light-emitting diodes with narrow full width at half maximum. Dye Pigment. 2023, 208, 110799. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Zhou, X.; Yuan, P.; Zhou, J.; Wang, C.; Li, B.; Hu, D.; Qiao, X.; Jiang, X. Highly efficient blue fluorescent OLEDs based on upper level triplet–singlet intersystem crossing. Adv. Mater. 2019, 31, 1807388. [Google Scholar] [CrossRef]
- Sudheendran, S.S.; Dubey, D.K.; Shahnawaz; Yadav, R.A.K.; Nagar, M.R.; Sharma, A.; Tung, F.C.; Jou, J.H. Approaches for long lifetime organic light emitting diodes. Adv. Sci. 2021, 8, 2002254. [Google Scholar] [CrossRef]
- Chan, C.Y.; Tanaka, M.; Lee, Y.T.; Wong, Y.W.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 2021, 15, 203–207. [Google Scholar] [CrossRef]
- Jeon, S.O.; Lee, K.H.; Kim, J.S.; Ihn, S.G.; Chung, Y.S.; Kim, J.W.; Lee, H.; Kim, S.; Choi, H.; Lee, J.Y. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photonics 2021, 15, 208–215. [Google Scholar] [CrossRef]
- Sun, J.; Ahn, H.; Kang, S.; Ko, S.B.; Song, D.; Um, H.A.; Kim, S.; Lee, Y.; Jeon, P.; Hwang, S.H. Exceptionally stable blue phosphorescent organic light-emitting diodes. Nat. Photonics 2022, 16, 212–218. [Google Scholar] [CrossRef]
- Corrêa Santos, D.; Vieira Marques, M.d.F. Blue light polymeric emitters for the development of OLED devices. J. Mater. Sci. Mater. Electron. 2022, 33, 12529–12565. [Google Scholar] [CrossRef]
- Li, L.; Zhu, X.; Sun, S.; Zhang, C.; Yang, B.; Liu, S.; Liu, Z. Blue Organic Light Emitting Diode Materials based on Different Light-emitting Groups. Curr. Org. Chem. 2023, 27, 352–362. [Google Scholar] [CrossRef]
- Kalyani, N.T.; Dhoble, S.J. Organic light emitting diodes: Energy saving lighting technology—A review. Renew. Sustain. Energy Rev. 2012, 16, 2696–2723. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Zhang, B.; Xie, Z.; Wong, W.Y. Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives. Mater. Sci. Eng. R Rep. 2020, 140, 100547. [Google Scholar] [CrossRef]
- Huang, J.; Su, J.H.; Tian, H. The development of anthracene derivatives for organic light-emitting diodes. J. Mater. Chem. 2012, 22, 10977–10989. [Google Scholar] [CrossRef]
- Adachi, C.; Baldo, M.A.; Thompson, M.E.; Forrest, S.R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 2001, 90, 5048–5051. [Google Scholar] [CrossRef]
- Lee, J.H.; Chen, C.H.; Lee, P.H.; Lin, H.Y.; Leung, M.k.; Chiu, T.L.; Lin, C.F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C 2019, 7, 5874–5888. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 2012, 134, 14706–14709. [Google Scholar] [CrossRef]
- Jang, E.B.; Choi, G.S.; Bae, E.J.; Ju, B.K.; Park, Y.W. Doping-Free Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with an Ultra-Thin Emission Layer. Nanomaterials 2023, 13, 2366. [Google Scholar] [CrossRef]
- Köhler, A.; Bässler, H. Electronic Processes in Organic Semiconductors: An Introduction; John Wiley & Sons: Weinheim, Germany, 2015; pp. 362–365. [Google Scholar]
- Tankelevićiūtė, E.; Samuel, I.D.W.; Zysman-Colman, E. The Blue Problem: OLED Stability and Degradation Mechanisms. J. Phys. Chem. Lett. 2024, 15, 1034–1047. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, D.; Rhee, Y.M. Overcoming the limitation of spin statistics in organic light emitting diodes (OLEDs): Hot exciton mechanism and its characterization. Int. J. Mol. Sci. 2023, 24, 12362. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, H.; Feng, X.; Tian, M.; Yang, D.; He, H.; Liu, K.; Li, J. Three times lifetime improvement of red-emitting organic light-emitting diodes based on bipolar host material. ECS J. Solid State Sci. Technol. 2018, 7, R57. [Google Scholar] [CrossRef]
- Zhao, N.; Li, Z.; Qin, L.; Cui, Z.; Sun, Z.; Cheng, Z.; Jiang, C.; Wang, S.; Zhao, T.; Liao, Y. Lifetime measurement and aging mechanism analysis of OLED subpixels. Displays 2022, 75, 102326. [Google Scholar] [CrossRef]
- Xiao, S.; Gao, Y.; Wang, R.; Liu, H.; Li, W.; Zhou, C.; Xue, S.; Zhang, S.T.; Yang, B.; Ma, Y. Highly efficient hybridized local and Charge-transfer (HLCT) Deep-blue electroluminescence with excellent molecular horizontal orientation. Chem. Eng. J. 2022, 440, 135911. [Google Scholar] [CrossRef]
- Chen, S.W.; Chen, J.X.; Chen, G.; Gong, Y.; Liu, B.; Chen, Y.; Jin, J.M.; Wang, R.; Wang, R.J.; Liu, J. Versatile deep blue fluorescent materials based on the hybridization of phenanthroimidazole and fluorene derivatives. Dye Pigment. 2024, 222, 111829. [Google Scholar] [CrossRef]
- Rashamuse, T.J.; Mohlala, R.L.; Coyanis, E.M.; Magwa, N.P. A review: Blue fluorescent Zinc (II) complexes for OLEDs—A last five-year recap. Molecules 2023, 28, 5272. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.L.; Ma, D.G.; Gong, Y.Y.; Jiang, M.H.; Li, S.G.; Jin, B. Efficient deep-blue electroluminescent devices based on a novel β-diketone zinc complex. Inorganica Chim. Acta 2022, 542, 121134. [Google Scholar] [CrossRef]
- Solanki, J.D.; Siddiqui, I.; Gautam, P.; Gupta, V.K.; Jou, J.H.; Surati, K.R. Blue fluorescent Zinc (II) complexes bearing schiff base ligand for solution-processed organic light-emitting diodes with CIEy ≤ 0.09. Opt. Mater. 2022, 134, 113222. [Google Scholar] [CrossRef]
- Yang, J.; Hu, D.; Zhu, F.; Ma, Y.; Yan, D. High-efficiency blue-emission crystalline organic light-emitting diodes sensitized by “hot exciton” fluorescent nanoaggregates. Sci. Adv. 2022, 8, eadd1757. [Google Scholar] [CrossRef]
- Du, C.; Liu, H.; Cheng, Z.; Zhang, S.; Qu, Z.; Yang, D.; Qiao, X.; Zhao, Z.; Lu, P. Ultraefficient Non-Doped Deep Blue Fluorescent OLED: Achieving a High EQE of 10.17% at 1000 cd m−2 with CIEy < 0.08. Adv. Funct. Mater. 2023, 33, 2304854. [Google Scholar]
- Feng, H.T.; Zeng, J.; Yin, P.A.; Wang, X.D.; Peng, Q.; Zhao, Z.; Lam, J.W.Y.; Tang, B.Z. Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nat. Commun. 2020, 11, 2617. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Ma, H.; Shi, H.; Wang, H.; Lv, A.; Bian, L.; Zhang, M.; Ma, C.; Ling, K.; Gu, M. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 2021, 20, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.C.; Zhang, Y.L.; Quinton, C.; McIntosh, N.; Yang, S.Y.; Rault-Berthelot, J.; Lucas, F.; Brouillac, C.; Jeannin, O.; Cornil, J. Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Light-Emitting Diodes: A New Molecular Design Approach. Angew. Chem. Int. Ed. 2022, 61, e202207204. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Song, D.; Zhao, S.; Qiao, B.; Ning, Y.; Dong, J.; Xu, Z. Small dose of phosphorescent dopant enabling high efficiency and bright solution-processed sky-blue organic light-emitting diodes. Opt. Mater. 2022, 128, 112278. [Google Scholar] [CrossRef]
- Jung, Y.H.; Lee, G.S.; Muruganantham, S.; Kim, H.R.; Oh, J.H.; Ham, J.H.; Yadav, S.B.; Lee, J.H.; Chae, M.Y.; Kim, Y.-H. Modified t-butyl in tetradentate platinum (II) complexes enables exceptional lifetime for blue-phosphorescent organic light-emitting diodes. Nat. Commun. 2024, 15, 2977. [Google Scholar] [CrossRef]
- Trindade, G.F.; Sul, S.; Kim, J.; Havelund, R.; Eyres, A.; Park, S.; Shin, Y.; Bae, H.J.; Sung, Y.M.; Matjacic, L. Direct identification of interfacial degradation in blue OLEDs using nanoscale chemical depth profiling. Nat. Commun. 2023, 14, 8066. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, K.M.; Kim, K.J.; Song, Y.N.; Kim, Y.K.; Kim, T. Effects of the phosphorescent sensitizer on charge dynamics in deep blue phosphor-sensitized-fluorescent organic light-emitting diodes. J. Inf. Disp. 2022, 23, 97–103. [Google Scholar] [CrossRef]
- Nam, S.; Kim, J.W.; Bae, H.J.; Maruyama, Y.M.; Jeong, D.; Kim, J.; Kim, J.S.; Son, W.J.; Jeong, H.; Lee, J. Improved efficiency and lifetime of deep-blue hyperfluorescent organic light-emitting diode using Pt (II) complex as phosphorescent sensitizer. Adv. Sci. 2021, 8, 2100586. [Google Scholar] [CrossRef]
- Wu, C.; Tong, K.N.; Shi, K.; Jin, Z.; Wu, Y.; Mu, Y.; Huo, Y.; Tang, M.C.; Yang, C.; Meng, H. New [3+ 2+ 1] Iridium Complexes as Effective Phosphorescent Sensitizers for Efficient Narrowband Saturated–Blue Hyper–OLEDs. Adv. Sci. 2023, 10, 2301112. [Google Scholar] [CrossRef]
- Kim, J.U.; Park, I.S.; Chan, C.-Y.; Tanaka, M.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nat. Commun. 2020, 11, 1765. [Google Scholar] [CrossRef]
- Naveen, K.R.; Lee, H.; Braveenth, R.; Yang, K.J.; Hwang, S.J.; Kwon, J.H. Deep blue diboron embedded multi-resonance thermally activated delayed fluorescence emitters for narrowband organic light emitting diodes. Chem. Eng. J. 2022, 432, 134381. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, D.; Wei, Y.; Zhang, J.; Han, C.; Xu, H. Excited-state engineering of universal ambipolar hosts for highly efficient blue phosphorescence and thermally activated delayed fluorescence organic light-emitting diodes. Chem. Eng. J. 2020, 382, 122485. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, R.; Zhong, C.; Xie, G.; Ning, W.; Huang, M.; Ni, F.; Dias, F.B.; Yang, C. Achieving 21% external quantum efficiency for nondoped solution-processed sky-blue thermally activated delayed fluorescence OLEDs by means of multi-(donor/acceptor) emitter with through-space/-bond charge transfer. Adv. Sci. 2020, 7, 1902087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wada, Y.; Wang, Q.; Dai, H.; Fan, T.; Meng, G.; Wei, J.; Zhang, Y.; Suzuki, K.; Li, G. Highly efficient and stable blue organic light-emitting diodes based on thermally activated delayed fluorophor with donor-void-acceptor motif. Adv. Sci. 2022, 9, 2106018. [Google Scholar] [CrossRef]
- Liang, X.; Tu, Z.L.; Zheng, Y.X. Thermally activated delayed fluorescence materials: Towards realization of high efficiency through strategic small molecular design. Chem. Eur. J. 2019, 25, 5623–5642. [Google Scholar] [CrossRef]
- Cui, L.S.; Gillett, A.J.; Zhang, S.F.; Ye, H.; Liu, Y.; Chen, X.K.; Lin, Z.S.; Evans, E.W.; Myers, W.K.; Ronson, T.K. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photonics 2020, 14, 636–642. [Google Scholar] [CrossRef]
- Wu, X.; Su, B.K.; Chen, D.G.; Liu, D.; Wu, C.C.; Huang, Z.X.; Lin, T.C.; Wu, C.H.; Zhu, M.; Li, E.Y. The role of host–guest interactions in organic emitters employing MR-TADF. Nat. Photonics 2021, 15, 780–786. [Google Scholar] [CrossRef]
- Park, I.S.; Yang, M.; Shibata, H.; Amanokura, N.; Yasuda, T. Achieving ultimate narrowband and ultrapure blue organic light-emitting diodes based on polycyclo-heteraborin multi-resonance delayed-fluorescence emitters. Adv. Mater. 2022, 34, 2107951. [Google Scholar] [CrossRef]
- Zhang, D.; Song, X.; Gillett, A.J.; Drummond, B.H.; Jones, S.T.E.; Li, G.; He, H.; Cai, M.; Credgington, D.; Duan, L. Efficient and stable deep-blue fluorescent organic light-emitting diodes employing a sensitizer with fast triplet upconversion. Adv. Mater. 2020, 32, 1908355. [Google Scholar] [CrossRef]
- Bian, J.; Chen, S.; Qiu, L.; Tian, R.; Man, Y.; Wang, Y.; Chen, S.; Zhang, J.; Duan, C.; Han, C. Ambipolar self-host functionalization accelerates blue multi-resonance thermally activated delayed fluorescence with internal quantum efficiency of 100%. Adv. Mater. 2022, 34, 2110547. [Google Scholar] [CrossRef]
- Braveenth, R.; Lee, H.; Park, J.D.; Yang, K.J.; Hwang, S.J.; Naveen, K.R.; Lampande, R.; Kwon, J.H. Achieving narrow FWHM and High EQE over 38% in blue OLEDs using rigid heteroatom-based deep blue TADF sensitized host. Adv. Funct. Mater. 2021, 31, 2105805. [Google Scholar] [CrossRef]
- Lee, H.; Braveenth, R.; Muruganantham, S.; Jeon, C.Y.; Lee, H.S.; Kwon, J.H. Efficient pure blue hyperfluorescence devices utilizing quadrupolar donor-acceptor-donor type of thermally activated delayed fluorescence sensitizers. Nat. Commun. 2023, 14, 419. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, K.; Franca, L.G.; Danos, A.; Monkman, A.P. Key requirements for ultraefficient sensitization in hyperfluorescence organic light-emitting diodes. Nat. Photonic 2024, 18, 554–561. [Google Scholar] [CrossRef]
- Ihn, S.G.; Jeong, D.; Kwon, E.S.; Kim, S.; Chung, Y.S.; Sim, M.; Chwae, J.; Koishikawa, Y.; Jeon, S.O.; Kim, J.S. Dipole moment-and molecular orbital-engineered phosphine oxide-free host materials for efficient and stable blue thermally activated delayed fluorescence. Adv. Sci. 2022, 9, 2102141. [Google Scholar] [CrossRef]
- Wright, I.A.; Danos, A.; Montanaro, S.; Batsanov, A.S.; Monkman, A.P.; Bryce, M.R. Conformational dependence of triplet energies in rotationally hindered N-and S-heterocyclic dimers: New design and measurement rules for high triplet energy OLED host materials. Chem. Eur. J. 2021, 27, 6545–6556. [Google Scholar] [CrossRef]
Type | Materials | EQEmax | Initial Luminescence/(cd m−2) | Lifetime/h | CIE(x,y) | Ref. |
---|---|---|---|---|---|---|
Fluorescent | DP | 6.4 | - | - | (0.153, 0.087) | [36] |
Fluorescent | SP | 11.3 | - | - | (0.158, 0.068) | [36] |
Fluorescent | SAFPI-2 | 3.83 | - | - | (0.15, 0.10) | [37] |
Fluorescent | SAFPI-3 | 4.99 | - | - | (0.16, 0.17) | [37] |
Fluorescent | Zn(PhCzKt)2 | 1.54 | - | - | (0.1558, 0.0901) | [39] |
Fluorescent | Zn-1 | 3.2 | - | - | (0.16, 0.09) | [40] |
Fluorescent | Zn-2 | 1.4 | - | - | (0.18, 0.11) | [40] |
Fluorescent | PAC | 10.48 | - | - | (0.15, 0.13) | [17] |
Fluorescent | 2FPPICz, PAC | 9.14 | - | - | (0.15, 0.17) | [41] |
Fluorescent | PITPh | 6.1 | - | - | (0.16, 0.06) | [42] |
Fluorescent | PPITPh | 11.83 | - | - | (0.15, 0.07) | [42] |
Phosphorescent | 1-mtp-SBF | 25.6 | - | - | (0.14, 0.32) | [45] |
Phosphorescent | PtON-tb-DTB | 20.9 | 1200 | LT95 = 169.3 | (0.14, 0.22) | [47] |
Phosphorescent | PtON-tb-TTB | 26.3 | 1200 | LT95 = 31 | (0.14, 0.22) | [47] |
Phosphorescent | FIrpic | 12.7 | - | - | - | [30] |
Phosphorescent | Ir(cb)3 | 21.6 | - | - | - | [49] |
Phosphorescent | PtON7-dtb(TBPDP as emitter) | 16.9 | 1000 | LT50 = 192.2 h | (0.109, 0.134) | [50] |
Phosphorescent | PtON7-dtb(ν-DABNA as emitter) | 32.2 | 1000 | LT50 = 253.8 | (0.115, 0.091) | [50] |
Phosphorescent | B–4–TMS | 33.43 | 100 | LT50 = 4465 | (0.119, 0.123) | [51] |
Phosphorescent | B–5–TMS | 33.42 | 100 | LT50 = 4552 | (0.119, 0.123) | [51] |
TADF | TMCz-BO | 20.7 | - | - | (0.14, 0.18) | [52] |
TADF | m-ν-DABNA | 36.2 | - | - | (0.12, 0.12) | [53] |
TADF | 4F-ν-DABNA | 35.8 | - | - | (0.13, 0.08) | [53] |
TADF | 4F-m-ν-DABNA | 33.7 | - | - | (0.13, 0.06) | [53] |
TADF | HDT-1 | 41 | 1000 | LT95 = 18 | (0.13, 0.16) | [19] |
TADF | DMAC-DPS | 11.1 | - | - | - | [30] |
Phosphorescent | 9CzFDBFDPO(FIRPIC as emitter) | 23.3 | - | - | (0.16, 0.31) | [54] |
TADF | 9CzFDBFDPO(DMAC-DPS as emitter) | 20.2 | - | (0.18, 0.22) | [54] | |
TADF | T-CNDF-T-t Cz | 21.0 | - | - | (0.19, 0.35) | [55] |
TADF | 23PCX | 25.5 | 100 | LT95 = 750 | (0.176, 0.357) | [56] |
TADF | 33PCX | 27.5 | 100 | LT95 = 650 | (0.156, 0.252) | [56] |
TADF | 5Cz-TRZ | 29.3 | 1000 | LT90 = 600 | - | [58] |
TADF | BOBO-Z | 16.6 | - | (0.15, 0.04) | [60] | |
TADF | BOBS-Z | 33.1 | - | - | (0.14, 0.06) | [60] |
TADF | BSBS-Z | 32.2 | - | - | (0.13, 0.08) | [60] |
TADF | p4TCzPhBN | 32.5 | 1000 | LT80 > 20 | CIEy = 0.12 | [61] |
TADF | PPCzTrz, PCzTrz | 33.5 | 1000 | LT50 > 5000 | (0.12, 0.09) | [20] |
TADF | tCBNDADPO | 30.8 | - | - | (0.14, 0.22) | [62] |
TADF | DBA-BFICz | 38.8 | - | - | (0.12, 0.15) | [63] |
TADF | DBA-DTMCz | 43.9 | - | - | (0.12, 0.16) | [64] |
TADF | ACRSA | 28.5 | - | - | - | [65] |
Type | Materials | Mechanism | EQEmax | Initial Luminescence/(cd m−2) | Lifetime/h | CIE(x,y) | Ref. |
---|---|---|---|---|---|---|---|
Fluorescent | SP | Molecular structure design | 11.3 | - | - | (0.158, 0.068) | [36] |
Fluorescent | PPITPh | Hot exciton | 11.83 | - | - | (0.15, 0.07) | [42] |
Phosphorescent | PtON7-dtb (ν-DABNA as emitter) | HF-OLED | 32.2 | 1000 | LT50 = 253.8 | (0.115, 0.091) | [50] |
Phosphorescent | B–4–TMS | HF-OLED | 33.43 | 100 | LT50 = 4465 | (0.119, 0.123) | [51] |
Phosphorescent | B–5–TMS | HF-OLED | 33.42 | 100 | LT50 = 4552 | (0.119, 0.123) | [51] |
TADF | HDT-1 | Two-unit-stacked tandem OLED, HF-OLED | 41 | 1000 | LT95 = 18 | (0.13, 0.16) | [19] |
TADF | PPCzTrz, PCzTrz | Cascade energy transfer, triplet-exciton recycling | 33.5 | 1000 | LT50 > 5000 | (0.12, 0.09) | [20] |
TADF | DBA-DTMCz | HF OLED | 43.9 | - | - | (0.12, 0.16) | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Mu, G.; Weng, K.; Tang, X. Advances in High-Efficiency Blue OLED Materials. Photonics 2024, 11, 864. https://doi.org/10.3390/photonics11090864
Yang X, Mu G, Weng K, Tang X. Advances in High-Efficiency Blue OLED Materials. Photonics. 2024; 11(9):864. https://doi.org/10.3390/photonics11090864
Chicago/Turabian StyleYang, Xiaoxue, Ge Mu, Kangkang Weng, and Xin Tang. 2024. "Advances in High-Efficiency Blue OLED Materials" Photonics 11, no. 9: 864. https://doi.org/10.3390/photonics11090864
APA StyleYang, X., Mu, G., Weng, K., & Tang, X. (2024). Advances in High-Efficiency Blue OLED Materials. Photonics, 11(9), 864. https://doi.org/10.3390/photonics11090864