Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities
Abstract
:1. Introduction
2. Hydrogen Effects in Dilute Nitrides
2.1. Hydrogen-Induced Band-Gap Tuning
2.2. Nitrogen-Hydrogen Complex Formation and Spatial Distribution
2.3. Reversibility of the Hydrogen Effects
3. A Novel Approach for Site-Controlled Quantum Emitter Fabrication
3.1. QD Fabrication by Spatially Selective Hydrogen Incorporation
3.2. QD Direct Writing by Near Field Illumination
4. Quantum Emitter Integration in Photonic Crystal Cavities
Lithographic Approach for QD-PhC Cavity Integration
5. Conclusions and Perspectives
Acknowledgments
Conflicts of Interest
References
- Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347–400. [Google Scholar] [CrossRef]
- Somaschi, N.; Giesz, V.; De Santis, L.; Loredo, J.C.; Almeida, M.P.; Hornecker, G.; Portalupi, S.L.; Grange, T.; Antón, C.; Demory, J.; et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 2016, 10, 340–345. [Google Scholar] [CrossRef]
- Klimov, V.I. Nanocrystal Quantum Dots; CRC Press: Boca Raton, FL, USA, 2010; ISBN 10 1420079263. [Google Scholar]
- Sattler, K.D. Handbook of Nanophysics: Nanoparticles and Quantum Dots; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978142007544. [Google Scholar]
- Michler, P. Single Semiconductor Quantum Dots; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-87445-4. [Google Scholar]
- Stangl, J.; Holy, V.; Bauer, G. Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 2004, 76, 725–783. [Google Scholar] [CrossRef]
- Schmidt, O.G. Lateral Alignment of Epitaxial Quantum Dots; Springer: Berlin, Germany, 2007; ISBN 978-3-540-46936-0. [Google Scholar]
- Hartmann, A.; Loubies, L.; Reinhardt, F.; Kapon, E. Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates. Appl. Phys. Lett. 1997, 71, 1314–1316. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Sakuma, Y.; Muto, S.; Yokoyama, N. Novel InGaAs/GaAs quantum dot structures formed in tetrahedral-shaped recesses on (111)B GaAs substrate using metalorganic vapor phase epitaxy. Appl. Phys. Lett. 1995, 67, 256–258. [Google Scholar] [CrossRef]
- Surrente, A.; Felici, M.; Gallo, P.; Rudra, A.; Dwir, B.; Kapon, E. Dense arrays of site-controlled quantum dots with tailored emission wavelength: Growth mechanisms and optical properties. Appl. Phys. Lett. 2017, 111, 221102. [Google Scholar] [CrossRef]
- Gallo, P.; Felici, M.; Dwir, B.; Atlasov, K.A.; Karlsson, K.F.; Rudra, A.; Mohan, A.; Biasiol, G.; Sorba, L.; Kapon, E. Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. Appl. Phys. Lett. 2008, 92, 263101. [Google Scholar] [CrossRef]
- Poole, P.J.; Dalacu, D.; Lefebvre, J.; Williams, R.L. Selective epitaxy of semiconductor nanopyramids for Nanophotonics. Nanotechnology 2010, 21, 295302. [Google Scholar] [CrossRef] [PubMed]
- Chithrani, D.; Williams, R.L.; Lefebvre, J.; Poole, P.J.; Aers, G.C. Optical spectroscopy of single, site-selected, InAs/InP self-assembled quantum dots. Appl. Phys. Lett. 2004, 84, 978–980. [Google Scholar] [CrossRef]
- Dalacu, D.; Mnaymneh, K.; Sazonova, V.; Poole, P.J.; Aers, G.C.; Lapointe, J.; Cheriton, R.; SpringThorpe, A.J.; Williams, R. Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Phys. Rev. B 2010, 82, 033301. [Google Scholar] [CrossRef]
- Jeppesen, S.; Miller, M.S.; Kowalski, B.; Maximov, I.; Samuelson, L. InAs quantum dots in GaAs holes: Island number dependence on hole diameter and conduction-band coupling estimates. Superlattices Microstruct. 1998, 23, 1347–1352. [Google Scholar] [CrossRef]
- Atkinson, P.; Ward, M.B.; Bremner, S.P.; Anderson, D.; Farrow, T.; Jones, G.A.C.; Shields, A.J.; Ritchie, D.A. Site-Control of InAs Quantum Dots using Ex-Situ Electron-Beam Lithographic Patterning of GaAs Substrates. Jpn. J. Appl. Phys. 2006, 45, 2519. [Google Scholar] [CrossRef]
- Jöns, K.D.; Atkinson, P.; Müller, M.; Heldmaier, M.; Ulrich, S.M.; Schmidt, O.G.; Michler, P. Triggered Indistinguishable Single Photons with Narrow Line Widths from Site-Controlled Quantum Dots. Nano Lett. 2013, 13, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Skiba-Szymanska, J.; Kalliakos, S.; Schwagmann, A.; Ward, M.B.; Brody, Y.; Ellis, D.J.P.; Farrer, I.; Griffiths, J.P.; Jones, G.A.C.; et al. On-chip generation and guiding of quantum light from a site-controlled quantum dot. Appl. Phys. Lett. 2014, 104, 101108. [Google Scholar] [CrossRef]
- Braun, T.; Schneider, C.; Maier, S.; Igusa, R.; Iwamoto, S.; Forchel, A.; Höfling, S.; Arakawa, Y.; Kamp, M. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots. AIP Adv. 2014, 4, 097128. [Google Scholar] [CrossRef] [Green Version]
- Kohmoto, S.; Nakamura, H.; Ishikawa, T.; Asakawa, K. Site-controlled self-organization of individual InAs quantum dots by scanning tunneling probe-assisted nanolithography. Appl. Phys. Lett. 1999, 75, 3488–3490. [Google Scholar] [CrossRef]
- Kitamura, M.; Nishioka, M.; Oshinowo, J.; Arakawa, Y. In situ fabrication of self-aligned InGaAs quantum dots on GaAs multiatomic steps by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1995, 66, 3663–3665. [Google Scholar] [CrossRef]
- Lee, H.; Johnson, J.A.; Speck, J.S.; Petroff, P.M. Controlled ordering and positioning of InAs self-assembled quantum dots. J. Vac. Sci. Technol. B 2000, 18, 2193–2196. [Google Scholar] [CrossRef]
- Kalliakos, S.; García, C.P.; Pellegrini, V.; Zamfirescu, M.; Cavigli, L.; Gurioli, M.; Vinattieri, A.; Pinczuk, A.; Dennis, B.S.; Pfeiffer, L.N.; West, K.W. Photoluminescence of individual doped GaAs/AlGaAs nanofabricated quantum dots. Appl. Phys. Lett. 2007, 90, 181902. [Google Scholar] [CrossRef]
- Hennessy, K.; Badolato, A.; Winger, M.; Gerace, D.; Atatüre, M.; Gulde, S.; Fält, S.; Hu, E.L.; Imamoğlu, A. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 2007, 445, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Dousse, A.; Lanco, L.; Suffczyňski, J.; Semenova, E.; Miard, A.; Lemaître, A.; Sagnes, I.; Roblin, C.; Bloch, J.; Senellart, P. Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography. Phys. Rev. Lett. 2008, 101, 267404. [Google Scholar] [CrossRef] [PubMed]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-M.; Liu, J.; Maier, S.; Emmerling, M.; Gerhard, S.; Davanço, M.; Srinivasan, K.; Schneider, C.; Höfling, S. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica 2017, 4, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, G.; Gerardino, A.; Businaro, L.; Polimeni, A.; Capizzi, M.; Hopkinson, M.; Rubini, S.; Biccari, F.; Intonti, F.; Vinattieri, A.; et al. A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides. Microelectron. Eng. 2017, 174, 16–19. [Google Scholar] [CrossRef]
- Felici, M.; Pettinari, G.; Biccari, F.; Boschetti, A.; Birindelli, S.; Younis, S.; Gurioli, M.; Vinattieri, A.; Gerardino, A.; Businaro, L.; et al. Broadband enhancement of light-matter interaction in photonic crystal cavities integrating site-controlled Ga(AsN)/Ga(AsN):H quantum dots. Phys. Rev. X 2018. under review. [Google Scholar]
- Biccari, F.; Boschetti, A.; Pettinari, G.; La China, F.; Gurioli, M.; Intonti, F.; Vinattieri, A.; Sharma, M.S.; Capizzi, M.; Gerardino, A.; et al. Site-controlled single photon emitters fabricated by near field illumination. Adv. Mater 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Ciatto, G. Hydrogenated Dilute Nitride Semiconductors; Pan Stanford Publishing: Singapore, 2015; ISBN 978-981-4463-45-4. [Google Scholar]
- Buyanova, I.A.; Chen, W.M. Physics and Applications of Dilute Nitrides; Taylor & Francis: New York, NY, USA, 2004; ISBN 1591690196. [Google Scholar]
- Henini, M. Dilute Nitride Semiconductors: Physics and Technology; Elsevier: New York, NY, USA, 2005; ISBN 9780080445021. [Google Scholar]
- Ayse, E. Dilute III-V Nitride Semiconductors and Material Systems; Springer: Berlin, Germany, 2008; ISBN 978-3-540-74529-7. [Google Scholar]
- O’Reilly, E.P.; Lindsay, A.; Klar, P.J.; Polimeni, A.; Capizzi, M. Trends in the electronic structure of dilute nitride alloys. Semicond. Sci. Technol. 2009, 24, 033001. [Google Scholar] [CrossRef]
- Kent, P.R.C.; Zunger, A. Evolution of III-V nitride alloy electronic structure: The localized to delocalized transition. Phys. Rev. Lett. 2001, 86, 2613–2616. [Google Scholar] [CrossRef] [PubMed]
- Kent, P.R.C.; Zunger, A. Theory of electronic structure evolution in GaAsN and GaPN alloys. Phys. Rev. B 2001, 64, 115208. [Google Scholar] [CrossRef]
- Tisch, U.; Finkman, E.; Salzman, J. The anomalous bandgap bowing in GaAsN. Appl. Phys. Lett. 2002, 81, 463–465. [Google Scholar] [CrossRef]
- Masia, F.; Pettinari, G.; Polimeni, A.; Felici, M.; Miriametro, A.; Capizzi, M.; Lindsay, A.; Healy, S.B.; O’Reilly, E.P.; Cristofoli, A.; et al. Interaction between conduction band edge and nitrogen states probed by carrier effective-mass measurements in GaAs1−xNx. Phys. Rev. B 2006, 73, 073201. [Google Scholar] [CrossRef]
- Allison, G.; Spasov, S.; Patanè, A.; Eaves, L.; Kozlova, N.V.; Freudenberger, J.; Hopkinson, M.; Hill, G. Electron effective mass and Si-donor binding energy in GaAs1−xNx probed by a high magnetic field. Phys. Rev. B 2008, 77, 125210. [Google Scholar] [CrossRef]
- Dannecker, T.; Jin, Y.; Cheng, H.; Gorman, C.F.; Buckeridge, J.; Uher, C.; Fahy, S.; Kurdak, C.; Goldman, R.S. Nitrogen composition dependence of electron effective mass in GaAs1−xNx. Phys. Rev. B 2010, 82, 125203. [Google Scholar] [CrossRef]
- Pettinari, G.; Masia, F.; Polimeni, A.; Felici, M.; Frova, A.; Capizzi, M.; Lindsay, A.; O’Reilly, E.P.; Klar, P.J.; Stolz, W.; et al. Influence of nitrogen-cluster states on the gyromagnetic factor of electrons in GaAs1−xNx. Phys. Rev. B 2006, 74, 245202. [Google Scholar] [CrossRef]
- Ivchenko, E.L.; Kalevich, V.K.; Shiryaev, A.Y.; Afanasiev, M.M.; Masumoto, Y. Optical orientation and spin-dependent recombination in GaAsN alloys under continuous-wave pumping. J. Phys. Cond. Matter 2010, 22, 465804. [Google Scholar] [CrossRef] [PubMed]
- Kunold, A.; Balocchi, A.; Zhao, F.; Amand, T.; Ben Abdallah, N.; Harmand, J.C.; Marie, X. Giant spin-dependent photo-conductivity in GaAsN dilute nitride semiconductor. Phys. Rev. B 2011, 83, 165202. [Google Scholar] [CrossRef]
- Klar, P.J.; Grüning, H.; Heimbrodt, W.; Koch, J.; Höhnsdorf, F.; Stolz, W.; Vicente, P.M.A.; Camassel, J. From N isoelectronic impurities to N-induced bands in the GaNxAs1−x alloy. Appl. Phys. Lett. 2000, 76, 3439–3441. [Google Scholar] [CrossRef]
- Weinstein, B.A.; Stambach, S.R.; Ritter, T.M.; Maclean, J.O.; Wallis, D.J. Evidence for selective delocalization of N-pair states in dilute GaAs1−xNx. Phys. Rev. B 2003, 68, 035336. [Google Scholar] [CrossRef]
- Pettinari, G.; Polimeni, A.; Masia, F.; Trotta, R.; Felici, M.; Capizzi, M.; Niebling, T.; Stolz, W.; Klar, P.J. Electron mass in dilute nitrides and its anomalous dependence on hydrostatic pressure. Phys. Rev. Lett. 2007, 98, 146402. [Google Scholar] [CrossRef] [PubMed]
- Polimeni, A.; Capizzi, M.; Geddo, M.; Fischer, M.; Reinhardt, M.; Forchel, A. Effect of nitrogen on the temperature dependence of the energy gap in InxGa1−xAs1−yNy/GaAs single quantum wells. Phys. Rev. B 2001, 63, 195320. [Google Scholar] [CrossRef]
- Luo, X.D.; Xu, Z.Y.; Ge, W.K.; Pan, Z.; Li, L.H.; Lin, Y.W. Photoluminescence properties of a GaN0.015As0.985/GaAs single quantum well under short pulse excitation. Appl. Phys. Lett. 2001, 79, 958–960. [Google Scholar] [CrossRef]
- Pettinari, G.; Felici, M.; Trotta, R.; Capizzi, M.; Polimeni, A. Hydrogen effects in dilute III-N-V alloys: From defect engineering to nanostructuring. J. Appl. Phys. 2014, 115, 012011. [Google Scholar] [CrossRef]
- Pearton, S.J.; Corbett, J.W.; Stavola, M. Hydrogen in Crystalline Semiconductors; Springer Series in Materials Science; Springer: Berlin, Germany, 1992; Volume 16. [Google Scholar]
- Pankove, J.I.; Johnson, N.M. Hydrogen in Semiconductors. In Semiconductors and Semimetals; Academic: New York, NY, USA, 1991; Volume 34. [Google Scholar]
- Pettinari, G.; Patanè, A.; Polimeni, A.; Capizzi, M.; Lu, X.; Tiedje, T. Effects of hydrogen on the electronic properties of Ga(AsBi) alloys. Appl. Phys. Lett. 2012, 101, 222103. [Google Scholar] [CrossRef]
- Pettinari, G.; Filippone, F.; Polimeni, A.; Mattioli, G.; Patanè, A.; Lebedev, V.; Capizzi, M.; Amore Bonapasta, A. Genesis of “Solitary Cations” Induced by Atomic Hydrogen. Adv. Funct. Mater. 2015, 25, 353–5359. [Google Scholar] [CrossRef]
- Kozlova, N.V.; Pettinari, G.; Makarovsky, O.; Mori, N.; Polimeni, A.; Capizzi, M.; Zhuang, Q.D.; Krier, A.; Patanè, A. Nonresonant hydrogen dopants in In(AsN): A route to high electron concentrations and mobilities. Phys. Rev. B 2013, 87, 165207. [Google Scholar] [CrossRef]
- Bissiri, M.; Baldassarri Höger von Högersthal, G.; Polimeni, A.; Gaspari, V.; Ranalli, F.; Capizzi, M.; Amore Bonapasta, A.; Jiang, F.; Stavola, M.; Gollub, D.; et al. Hydrogen induced passivation of nitrogen in GaAs1−yNy. Phys. Rev. B 2002, 65, 235210. [Google Scholar] [CrossRef]
- Polimeni, A.; Baldassarri Höger von Högersthal, G.; Bissiri, M.; Capizzi, M.; Frova, A.; Fischer, M.; Reinhardt, M.; Forchel, A. Role of hydrogen in III-N-V compound semiconductors. Semicond. Sci. Technol. 2002, 17, 797. [Google Scholar] [CrossRef]
- Klar, P.J.; Grüning, H.; Güngerich, M.; Heimbrodt, W.; Koch, J.; Torunski, T.; Stolz, W.; Polimeni, A.; Capizzi, M. Global changes of the band structure and the crystal lattice of Ga(N,As) due to hydrogenation. Phys. Rev. B 2003, 67, 121206. [Google Scholar] [CrossRef]
- Polimeni, A.; Baldassarri, H.V.H.G.; Bissiri, H.M.; Capizzi, M.; Fischer, M.; Reinhardt, M.; Forchel, A. Effect of hydrogen on the electronic properties of InxGa1−xAs1−yNy/GaAs quantum wells. Phys. Rev. B 2001, 63, 201304. [Google Scholar] [CrossRef]
- Baldassarri, H.V.H.G.; Bissiri, M.; Polimeni, A.; Capizzi, M.; Fischer, M.; Reinhardt, M.; Forchel, A. Hydrogen-induced band gap tuning of (InGa)(AsN)/GaAs single quantum wells. Appl. Phys. Lett. 2001, 78, 3472–3474. [Google Scholar] [CrossRef]
- Polimeni, A.; Bissiri, M.; Felici, M.; Capizzi, M.; Buyanova, I.A.; Chen, W.M.; Xin, H.P.; Tu, C.W. Nitrogen passivation induced by atomic hydrogen: The GaP1−yNy case. Phys. Rev. B 2003, 67, 201303. [Google Scholar] [CrossRef]
- Polimeni, A.; Masia, F.; Pettinari, G.; Trotta, R.; Felici, M.; Capizzi, M.; Lindsay, A.; O’Reilly, E.P.; Niebling, T.; Stolz, W.; et al. Role of strain and properties of N clusters at the onset of the alloy limit in GaAs1−xNx. Phys. Rev. B 2008, 77, 155213. [Google Scholar] [CrossRef]
- Trotta, R.; Polimeni, A.; Capizzi, M. Hydrogen Incorporation in III-N-V Semiconductors: From Macroscopic to Nanometer Control of the Materials’ Physical Properties. Adv. Funct. Mater. 2012, 22, 1782–1801. [Google Scholar] [CrossRef]
- Wen, L.; Bekisli, F.; Stavola, M.; Fowler, W.B.; Trotta, R.; Polimeni, A.; Capizzi, M.; Rubini, S.; Martelli, F. Detailed structure of the H-N-H center in GaAs1-yNy revealed by vibrational spectroscopy under uniaxial stress. Phys. Rev. B 2010, 81, 233201. [Google Scholar] [CrossRef]
- Ciatto, G.; Boscherini, F.; Amore Bonapasta, A.; Filippone, F.; Polimeni, A.; Capizzi, M. Nitrogen-hydrogen complex in GaAsxN1−x revealed by x-ray absorption spectroscopy. Phys. Rev. B 2005, 71, 201301. [Google Scholar] [CrossRef]
- Fowler, W.B.; Martin, K.R.; Washer, K.; Stavola, M. Structure and vibrational properties of N-H2 complexes in GaAs:N. Phys. Rev. B 2005, 72, 035208. [Google Scholar] [CrossRef]
- Du, M.-H.; Limpijumnong, S.; Zhang, S.B. Hydrogen pairs and local vibrational frequencies in H-irradiated GaAs1−yNy. Phys. Rev. B 2005, 72, 073202. [Google Scholar] [CrossRef]
- Amore Bonapasta, A.; Filippone, F.; Mattioli, G. H-Induced dangling bonds in H–isoelectronic-impurity complexes formed in GaAs1−yNy alloys. Phys. Rev. Lett. 2007, 98, 206403. [Google Scholar] [CrossRef] [PubMed]
- Trotta, R.; Giubertoni, D.; Polimeni, A.; Bersani, M.; Capizzi, M.; Martelli, F.; Rubini, S.; Bisognin, G.; Berti, M. Hydrogen diffusion in GaAs1−xNx. Phys. Rev. B 2009, 80, 195206. [Google Scholar] [CrossRef]
- Bissiri, M.; Baldassarri Höger von Högersthal, G.; Polimeni, A.; Capizzi, M.; Gollub, D.; Fischer, M.; Reinhardt, M.; Forchel, A. Role of N clusters in InxGa1−xAs1−yNy band-gap reduction. Phys. Rev. B 2002, 66, 033311. [Google Scholar] [CrossRef]
- Felici, M.; Polimeni, A.; Salviati, G.; Lazzarini, L.; Armani, N.; Masia, F.; Capizzi, M.; Martelli, F.; Lazzarino, M.; Bais, G.; et al. In-Plane Bandgap Engineering by Modulated Hydrogenation of Dilute Nitride Semiconductors. Adv. Mater. 2006, 18, 1993–1997. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Pettinari, G.; Makarovsky, O.; Turyanska, L.; Fay, M.W.; De Luca, M.; Polimeni, A.; Capizzi, M.; Martelli, F.; Rubini, S.; et al. Band-gap profiling by laser writing of hydrogen-containing III-N-Vs. Phys. Rev. B 2012, 86, 155307. [Google Scholar] [CrossRef]
- Ciatto, G.; Pettinari, G.; Balakrishnan, N.; Berenguer, F.; Patanè, A.; Birindelli, S.; Felici, M.; Polimeni, A. Synchrotron x-ray diffraction study of micro-patterns obtained by spatially selective hydrogenation of GaAsN. Appl. Phys. Lett. 2015, 106, 051905. [Google Scholar] [CrossRef]
- Lax, M. Temperature rise induced by a laser beam. J.Appl. Phys. 1997, 48, 3919–3924. [Google Scholar] [CrossRef]
- Bisognin, G.; De Salvador, D.; Drigo, A.V.; Napolitani, E.; Sambo, A.; Berti, M.; Polimeni, A.; Felici, M.; Capizzi, M. Hydrogen-nitrogen complexes in dilute nitride alloys: Origin of the compressive lattice strain. Appl. Phys. Lett. 2006, 89, 061904. [Google Scholar] [CrossRef]
- Bisognin, G.; De Salvador, D.; Napolitani, E.; Berti, M.; Polimeni, A.; Capizzi, M.; Rubini, S.; Martelli, F.; Franciosi, A. High resolution X-ray diffraction in situ study of very small complexes: The case of hydrogenated dilute nitrides. J. Appl. Cryst. 2008, 41, 366–372. [Google Scholar] [CrossRef]
- Santos, P.V.; Johnson, N.M.; Street, R.A. Light-enhanced hydrogen motion in a-Si:H. Phys. Rev. Lett. 1991, 67, 2686–2689. [Google Scholar] [CrossRef] [PubMed]
- Loridant-Bernard, D.; Meziere, S.; Constant, M.; Dupuy, N.; Sombret, S.; Chevalier, J. Infrared study of light-induced reactivation of neutralized dopants in hydrogenated n-type GaAs doped with silicon. Appl. Phys. Lett. 1998, 73, 644–646. [Google Scholar] [CrossRef]
- Trotta, R.; Polimeni, A.; Martelli, F.; Pettinari, G.; Capizzi, M.; Felisari, L.; Rubini, S.; Francardi, M.; Gerardino, A.; Christianen, P.C.M.; et al. Fabrication of Site-Controlled Quantum Dots by Spatially Selective Incorporation of Hydrogen in Ga(AsN)/GaAs Heterostructures. Adv. Matter 2011, 23, 2706–2710. [Google Scholar] [CrossRef] [PubMed]
- Birindelli, S.; Felici, M.; Wildmann, J.S.; Polimeni, A.; Capizzi, M.; Gerardino, A.; Rubini, S.; Martelli, F.; Rastelli, A.; Trotta, R. Single Photons on Demand from Novel Site-Controlled GaAsN/GaAsN:H Quantum Dots. Nano Lett. 2014, 14, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A. Broad-beam ion sources. Rev. Sci. Instrum. 1990, 61, 230–235. [Google Scholar] [CrossRef]
- Zayats, A.; Richards, D. Nano-Optics and Near-Field Optical Microscopy; Artech House: Norwood, MA, USA, 2009; ISBN 10 159693283X. [Google Scholar]
- Iles-Smith, J.; McCutcheon, D.P.S.; Nazir, A.; Mørk, J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photonics 2017, 11, 521–526. [Google Scholar] [CrossRef]
- Grange, T.; Somaschi, N.; Antón, C.; De Santis, L.; Coppola, G.; Giesz, V.; Lemaître, A.; Sagnes, I.; Auffèves, A.; Senellart, P. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics. Phys. Rev. Lett. 2017, 118, 253602. [Google Scholar] [CrossRef] [PubMed]
- Englund, D.; Fattal, D.; Waks, E.; Solomon, G.; Zhang, B.; Nakaoka, T.; Arakawa, Y.; Yamamoto, Y.; Vučković, J. Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Phys. Rev. Lett. 2005, 95, 013904. [Google Scholar] [CrossRef] [PubMed]
- Yoshie, T.; Scherer, A.; Hendrickson, J.; Khitrova, G.; Gibbs, H.M.; Rupper, G.; Ell, C.; Shchekin, O.B.; Deppe, D.G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 2004, 432, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Englund, D.; Faraon, A.; Fushman, I.; Stoltz, N.; Petroff, P.; Vučković, J. Controlling cavity reflectivity with a single quantum dot. Nature 2007, 450, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Caselli, N.; Intonti, F.; La China, F.; Riboli, F.; Gerardino, A.; Bao, W.; Bargioni, A.W.; Li, L.; Linfield, E.H.; Pagliano, F.; et al. Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes. Light Sci. Appl. 2015, 4, e326. [Google Scholar] [CrossRef]
- Akahane, Y.; Mochizuki, M.; Asano, T.; Tanaka, Y.; Noda, S. Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab. Appl. Phys. Lett. 2003, 82, 1341–1343. [Google Scholar] [CrossRef] [Green Version]
- Polimeni, A.; Bissiri, M.; Augieri, A.; Baldassarri Hoger von Högersthal, G.; Capizzi, M.; Gollub, D.; Fischer, M.; Reinhardt, M.; Forchel, A. Reduced temperature dependence of the band gap in GaAs1−yNy investigated with photoluminescence. Phys. Rev. B 2002, 65, 235325. [Google Scholar] [CrossRef]
- Gevaux, D.G.; Bennett, A.J.; Stevenson, R.M.; Shields, A.J.; Atkinson, P.; Griffiths, J.; Anderson, D.; Jones, G.A.C.; Ritchie, D.A. Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities. Appl. Phys. Lett. 2006, 88, 131101. [Google Scholar] [CrossRef]
- Pankove, J. Optical Processes in Semiconductors; Dover: New York, NY, USA, 1975; ISBN 10 0486602753. [Google Scholar]
- Purcell, E.M. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev. 1946, 69, 681. [Google Scholar]
- Felici, M.; Pettinari, G.; Biccari, F.; Capizzi, M.; Polimeni, A. Spatially selective hydrogen irradiation of dilute nitride semiconductors: A brief review. Semicond. Sci. Technol. 2018, 33, 053001. [Google Scholar] [CrossRef]
- Portalupi, S.L.; Hornecker, G.; Giesz, V.; Grange, T.; Lemaître, A.; Demory, J.; Sagnes, I.; Lanzillotti-Kimura, N.D.; Lanco, L.; Auffèves, A.; et al. Bright Phonon-Tuned Single-Photon Source. Nano Lett. 2015, 15, 6290–6294. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Hopkinson, M.; Navaretti, P.; Gutierrez, M.; Ng, J.S.; David, J.P.R. Improving optical properties of 1.55 μm GaInNAs/GaAs multiple quantum wells with Ga(In)NAs barrier and space layer. Appl. Phys. Lett. 2003, 83, 4951–4953. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettinari, G.; Felici, M.; Biccari, F.; Capizzi, M.; Polimeni, A. Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities. Photonics 2018, 5, 10. https://doi.org/10.3390/photonics5020010
Pettinari G, Felici M, Biccari F, Capizzi M, Polimeni A. Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities. Photonics. 2018; 5(2):10. https://doi.org/10.3390/photonics5020010
Chicago/Turabian StylePettinari, Giorgio, Marco Felici, Francesco Biccari, Mario Capizzi, and Antonio Polimeni. 2018. "Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities" Photonics 5, no. 2: 10. https://doi.org/10.3390/photonics5020010
APA StylePettinari, G., Felici, M., Biccari, F., Capizzi, M., & Polimeni, A. (2018). Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities. Photonics, 5(2), 10. https://doi.org/10.3390/photonics5020010