Synthesis of Nanostructure InxGa1−xN Bulk Alloys and Thin Films for LED Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bulk Alloy Preparation by the Crystal Growth Technique
2.3. Preparation of Doped Alloys by the Crystal Growth Technique
2.3.1. Preparation of In0.1Ga0.9N: Mg [p-type]
2.3.2. Preparation of In0.1Ga0.9N: Zn [n-type]
2.3.3. Preparation of Bulk Buffer GaN Alloy
3. Results
3.1. X-ray Diffraction
3.1.1. For InxGa1−xN Alloys Prepared at Different Compositions
3.1.2. InxGa1−xN Thin Film Deposited by TVE at Different Compositions
3.2. Compositional Analysis
3.2.1. Bulk Alloys and Thin Film at Different Compositions Prepared by TVE
3.3. Morphology
3.3.1. Bulk Alloys with Different Compositions Prepared by Crystal Growth
3.3.2. Thin Films Prepared by TVE at Different Compositions Deposited on Glass
3.4. Optical Properties for Thin Films
Photoluminescence (PL) Thin Films Prepared by Thermal Vacuum Evaporation
3.5. Raman Spectroscopy
3.5.1. In0.1Ga0.9N Thin Films Deposited by Thermal Vacuum Evaporation
3.6. Device Fabrication
3.6.1. Device Characterizations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekinci, H.; Kuryatkov, V.; Forgey, C.; Dabiran, A.; Jorgenson, R.; Nikishin, S. Properties of InGaN/GaN MQW LEDs grown by MOCVD with and without hydrogen carrier gas. Vacuum 2018, 148, 168–172. [Google Scholar] [CrossRef]
- Mokhov, E.N.; Wolfson, A.A. Single Crystals of Electronic Materials; Woodhead Publishing: Cambridge, UK, 2019; pp. 401–445. [Google Scholar]
- Jung, B.O.; Bae, S.Y.; Kim, S.Y.; Lee, S.; Lee, J.Y.; Lee, D.S.; Kato, Y.; Honda, Y.; Amano, H. Highly ordered catalyst-free InGaN/GaN core–shell architecture arrays with expanded active area region. Nano Energy 2015, 11, 294–303. [Google Scholar] [CrossRef]
- Al-Khanbashi, H.A.; Almarwani, A.M. Evaluation of the optical properties of the InGaN/GaN quantum well nanopillar arrays prepared via MOVPE approach. Optika 2018, 164, 28–35. [Google Scholar] [CrossRef]
- Zimmermann, F.; Beyer, F.C.; Gärtner, G.; Röder, C.; Son, N.T.; Janzén, E.; Veselá, D.; Lorinčík, J.; Hofmann, P.; Krupinski, M.; et al. Origin of orange color in nominally undoped HVPE GaN crystals. Opt. Mater. 2017, 70, 127–130. [Google Scholar] [CrossRef]
- Jennifer, K.H.; Travis, J.A.; Lunet, E.L.; James, C.G.; Charles, R.E. Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD. J. Cryst. Growth 2018, 498, 352–356. [Google Scholar]
- Tomasz, S.; Zachary, B.; Mikolaj, A.; Milena, B.; Michal, F.; Isaac, B.; Boleslaw, L.; Ramon, C.; Weyher, J.; Kucharski, R.; et al. HVPE-GaN grown on MOCVD-GaN/sapphire template and ammonothermal GaN seeds: Comparison of structural, optical, and electrical properties. J. Cryst. Growth 2014, 394, 55–60. [Google Scholar]
- Ariff, A.; Ahmad, M.A.; Hassan, Z.; Zainal, N. Influence of ammonia flow rate for improving properties of polycrystalline GaN. Superlattices Microstruct. 2018, 118, 130–136. [Google Scholar] [CrossRef]
- Loganathan, R.; Baskar, K. Epitaxial growth of AlN microwalls on wet etched GaN template by MOCVD. Superlattices Microstruct. 2018, 123, 144–153. [Google Scholar]
- Mickevičius, J.; Dobrovolskas, D.; Steponavičius, T.; Malinauskas, T.; Kolenda, M.; Kadys, A.; Tamulaiti, G. Engineering of InN epilayers by repeated deposition of ultrathin layers in pulsed MOCVD growth. Appl. Surf. Sci. 2018, 427, 1027–1032. [Google Scholar] [CrossRef]
- Bagavath, C.; Lucía, N.; Jitendra, S.K. Investigations on the nanostructures of GaN, InN and InxGa1−xN. Mater. Sci. Semicond. Process. 2016, 72, 61–67. [Google Scholar] [CrossRef]
- Teles, L.K.; Marques, M.; Scolfaro, L.M.R.; Leite, J.R. Phase Separation and Ordering in Group-III Nitride Alloys. J. Braz. Phys. 2004, 34, 593–597. [Google Scholar] [CrossRef]
- Pengfei, L.; Dan, L.; Chunfang, Z.; Ruge, Q.; Shumin, W. Closing the bandgap for III-V nitrides toward mid-infrared and THz applications. Sci. Rep. 2017, 7, 10594. [Google Scholar]
- Osamura, K.; Naka, S.; Murakami, Y. Preparation and optical properties of Ga1−xInxN thin films. J. Appl. Phys. 1975, 46, 3432. [Google Scholar] [CrossRef]
- Clinton, E.A.; Vadiee, E.; Fabien, C.A.; Moseley, M.W.; Gunning, B.P.; Doolittle, W.A.; Fischer, A.M.; Wei, Y.O.; Xie, H.; Ponce, F.A. A review of the synthesis of reduced defect density InxGa1−xN for all indium compositions. Solid-State Electron. 2017, 136, 3–11. [Google Scholar] [CrossRef]
- Itoh, T.; Hibino, S.; Sahashi, T.; Kato, Y.; Koiso, S.; Ohashi, F.; Nonomura, S. InXGa1−xN films deposited by reactive RF-sputtering. J. Non-Cryst. Solids 2012, 358, 2362–2365. [Google Scholar] [CrossRef]
- Pavel, S.; Goloshchapov, D.; Lenshin, A.; Mizerov, А.М.; Zotolukhin, D.S. Influence of por-Si sublayer on the features of heteroepitaxial growth and physical properties of InxGa1−xN/Si(111) heterostructures with nanocolumn morphology of thin film. Phys. E Low Dimens. Syst. Nanostruct. 2017, 413, 62–67. [Google Scholar]
- Guarneros, J.E.; Sánchez, V.M.; López, U. Study of InxGa1−xN layers growth on GaN/Al2O3 by MOCVD at different pressures. Superficies y Vacío 2013, 26, 107–110. [Google Scholar]
- Tomasz, J.O.; Bernard, G.; Pierre, L. Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN. Appl. Phys. Lett. 1999, 74, 3353. [Google Scholar]
- Okada, N.; Inomata, Y.; Ikeuchi, H.; Fujimoto, S.; Itakura, H.; Nakashima, S.; Kawamura, R.; Tadatomo, K. Characterization of high-quality relaxed flat InGaN template fabricated by combination of epitaxial, lateral overgrowth and chemical mechanical polishing. J. Cryst. Growth 2019, 512, 147–151. [Google Scholar] [CrossRef]
- Song, A.Y.; Bhat, R.; Allerman, A.A.; Wang, J.; Huang, T.Y.; Zah, C.E.; Gmachl, C.F. Quantum cascade emission in the III-nitride material system designed with effective interface grading. Appl. Phys. Lett. 2015, 107, 132104. [Google Scholar] [CrossRef]
- Pereira, S.; Correia, M.R.; Monteiro, T.; Pereira, E.; Alves, E.; Sequeira, A.D.; Franco, N. Compositional dependence of the strain-free optical band gap in InxGa1−xN layers. Appl. Phys. Lett. 2001, 78, 21–37. [Google Scholar] [CrossRef]
- Xue, J.J.; Chen, D.J.; Liu, B.; Lu, H.; Zhang, R.; Zheng, Y.D.; Cui, B.; Andrew, M.W.; Amir, M.D.; Xu, K.; et al. Indium-rich InGaN epitaxial layers grown pseudomorphically on a nano-sculpted InGaN template. Opt. Express. 2012, 20, 8093–8099. [Google Scholar] [CrossRef] [PubMed]
- Baş, Y.; Demirel, P.; Akın, N.; Başköse, C.; Özen, Y.; Kınacı, B.; Öztürk, M.; Özçelik, S.; Özbay, E. Microstructural defect properties of InGaN/GaN blue light emitting diode structures. J. Mater. Sci.-Mater. Electron. 2014, 25, 3924–3932. [Google Scholar]
- Ramos-Carrazco, A.; Chaikina, E.; Contreras, O.E.; Barboza-Flores, M.; Garcia, R. Structural and optical characterization of InxGa1−xN nano-structured grown by chemical vapor deposition. Rev. Mex. Fis. 2011, 57, 7–9. [Google Scholar]
- Strocov, V.N.; Schmitt, T.; Rubensson, J.E.; Blaha, P.; Paskova, T.; Nilsson, P.O. Band structure effects in nitrogen K–edge resonant inelastic X–ray scattering from GaN. Phys. Status Solidi 2004, 241, R27–R29. [Google Scholar] [CrossRef]
- Chen, X.; Matthews, K.D.; Hao, D.; Schaff, W.J.; Eastman, L.F. Growth, fabrication, and characterization of InGaN solar cells. Phys. Status Solidi (a) 2008, 205, 1103–1105. [Google Scholar] [CrossRef]
- Yildiza, A.; Dagdelenb, F.; Acarc, S.; Lisesivdinc, S.B.; Kasapc, M.; Aydogdub, Y.; Bosid, M. Stokes Shift and Band Gap Bowing in InxGa1−xN (0.060 ≤ x ≤ 0.105) Grown by Metalorganic Vapour Phase Epitaxy. Acta Phys. Pol. 2008, 113, 731–739. [Google Scholar] [CrossRef]
- Mohamed, F.; Bechstedt, F. First-principles calculations of gap bowing in InxGa1−xN and InxAl1−xN alloys: Relation to structural and thermodynamic properties. Phys. Rev. B 2002, 65, 075213. [Google Scholar]
- Xing, Z.; Yang, W.; Yuan, Z.; Li, X.; Wu, Y.; Long, J.; Jin, S.; Zhao, Y.; Liu, T.; Bian, L.; et al. Growth and characterization of High In-content InGaN grown by MBE using Metal modulated epitaxy technique (MME). J. Cryst. Growth 2019, 516, 57–62. [Google Scholar] [CrossRef]
- Hernánde, C.A.; Yuriy, K.; Dagoberto, C.; Guillén, A.; Santana, G.; Arturo, E.E.E.; Luis, H.H.; Maximo, L.L. InxGa1−xN nucleation by In+ ion implanation into GaN. Nucl. Instrum. Methods Phys. Res. B 2017, 413, 62–67. [Google Scholar]
- Hernandez, S.; Cusco, R.; Pastor, D.; Artus, L.; ODonnell, K.P.; Martin, R.W.; Watson, I.M.; Nanishi, Y.; Calleja, E. Raman-scattering study of the InGaN alloy over the whole composition range. Appl. Phys. 2005, 98, 013511. [Google Scholar] [CrossRef]
- Strelchuk, V.V.; Kladko, V.P.; Avramenko, E.A.; Kolomys, O.F.; Safryuk, N.V.; Konakova, R.V.; Yavich, B.S.; Valakh, M.Y.; Machulin, V.F.; Belyaev, A.E. Diffraction Analysis and Scanning Micro_Raman Spectroscopy the Multilayered InGaN/GaN Heterostructure. Fizika i Tekhnika Poluprovodnikov 2010, 44, 1236–1247. [Google Scholar]
- Lin, C.H.; Kuo, H.C.; Lai, C.F.; Huang, H.W.; Leung, K.M.; Yu, C.C.; Lo, J.R. Light extraction enhancement of InGaN-based green LEDs with a composite omni- directional reflector. Semicond. Sci. Technol. 2006, 21, 1513–1517. [Google Scholar] [CrossRef]
- Kang, M.S.; Lee, C.H.; Park, J.B.; Yoo, H.; Yi, G.C. Gallium nitride nanostructures for light-emitting diode applications. Nano Energy 2012, 1, 391–400. [Google Scholar] [CrossRef]
- Sheu, J.K.; Pan, C.J.; Chi, G.C.; Kuo, C.H.; Wu, L.W.; Chen, C.H.; Chang, S.J.; Su, Y.K. White-light emission from InGaN/GaN multi-quantum well light-emitting diodes with Si and Zn co doped active layer. IEEE Photonic Technol. Lett. 2002, 14, 450–452. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; McNamar, J.D.; Helava, H.; Usikov, A.; Makarov, A. Two yellow lumincess bands in undoped GaN. Sci. Rep. 2018, 8, 8091. [Google Scholar] [CrossRef] [PubMed]
- Chuo, C.C.; Lee, C.M.; Chyi, J.I. Inter diffusion of In and Ga in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2001, 78, 314–316. [Google Scholar] [CrossRef]
- Chang, S.J.; Wu, L.W.; Su, Y.K.; Kuo, C.H.; Lai, W.C.; Hsu, Y.P.; Sheu, J.K.; Chen, J.F.; Tsai, J.M. Si and Zn Co-Doped InGaN–GaN White Light-Emitting Diodes. IEEE Trans. Electron Devices 2003, 50, 519–521. [Google Scholar] [CrossRef]
- Kunert, H.W.; Brink, D.J.; Auret, F.D.; Maremane, M.; Prinsloo, L.C.; Barnas, J.; Beaumont, B.; Gibart, P. Photoluminescence and Raman spectroscopy of Mg-doped GaN as grown, hydrogen implanted and annealed. Mater. Sci. Eng. B 2003, 102, 293–297. [Google Scholar] [CrossRef]
- Ti, W.; Hao, W.; Zheng, W.; Chao, C.; Chang, L. Blue light emission from the heterostructured ZnO/InGaN/GaN. Nano Exp. 2013, 8, 99. [Google Scholar]
- Sun, X.; Liu, W.B.; Jiang, D.S.; Liu, Z.S.; Zhang, S.; Wang, L.L.; Wang, H.; Zhu, J.J.; Duan, L.H.; Wang, Y.T. Photoelectric characteristics of metal / InGaN/ GaN heterojunction. Appl. Phys. 2008, 41, 165108. [Google Scholar] [CrossRef]
InxGa1−xN | Bulk Alloys | Thin Films | ||||
---|---|---|---|---|---|---|
In% | Ga% | N% | In% | Ga% | N% | |
In0.1Ga0.9N | 11.46 | 86.02 | 2.52 | 17.41 | 60.73 | 21.85 |
In0.3Ga0.7N | 27.3 | 64.2 | 8.5 | 31.06 | 63.78 | 5.17 |
In0.5Ga0.5N | 42.90 | 40.70 | 16.4 | 48.05 | 44.77 | 7.18 |
In0.7Ga0.3N | 67.78 | 25.51 | 6.7 | 60.67 | 32.65 | 6.68 |
In0.9Ga0.1N | 88.02 | 9.46 | 2.52 | 82.67 | 13.41 | 3.92 |
Composition of InxGa1−xN Bulk Alloy (x%) | Bulk Alloy Deposited on Glass | |
---|---|---|
Length (nm) | Diameter (nm) | |
0.1 | 341 | 69 |
0.3 | 176 | 49 |
0.5 | 153 | 9.1 |
0.7 | 142 | 7.7 |
0.9 | 104 | 4.25 |
Composition of InxGa1−xN Thin Films | Particle Size (nm) from FESEM | Crystallite Size (nm) from XRD |
---|---|---|
0.1 | 35.1 | 32.23 |
0.3 | 28.8 | 25.04 |
0.5 | 27.1 | 24.73 |
0.7 | 22.9 | 24.39 |
0.9 | 22.1 | 20.55 |
Composition (In) | Bulk Alloys | Thin Films | ||
---|---|---|---|---|
Bowing Parameter (eV) | Bandgap (eV) InxGa1−xN | Bowing Parameter | Bandgap(eV) InxGa1−xN | |
0.1 | 2.89 | 2.65 | 1.24 | 2.61 |
0.3 | 2.12 | 2.16 | 1.04 | 2.51 |
0.5 | 1.87 | 1.78 | 0.97 | 2.45 |
0.7 | 1.67 | 1.67 | 0.85 | 2.44 |
0.9 | 1.33 | 1.49 | 0.77 | 2.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
B. Kashyout, A.E.-H.; Fathy, M.; Gad, S.; Badr, Y.; A. Bishara, A. Synthesis of Nanostructure InxGa1−xN Bulk Alloys and Thin Films for LED Devices. Photonics 2019, 6, 44. https://doi.org/10.3390/photonics6020044
B. Kashyout AE-H, Fathy M, Gad S, Badr Y, A. Bishara A. Synthesis of Nanostructure InxGa1−xN Bulk Alloys and Thin Films for LED Devices. Photonics. 2019; 6(2):44. https://doi.org/10.3390/photonics6020044
Chicago/Turabian StyleB. Kashyout, Abd El-Hady, Marwa Fathy, Sara Gad, Yehia Badr, and Ahmed A. Bishara. 2019. "Synthesis of Nanostructure InxGa1−xN Bulk Alloys and Thin Films for LED Devices" Photonics 6, no. 2: 44. https://doi.org/10.3390/photonics6020044
APA StyleB. Kashyout, A. E. -H., Fathy, M., Gad, S., Badr, Y., & A. Bishara, A. (2019). Synthesis of Nanostructure InxGa1−xN Bulk Alloys and Thin Films for LED Devices. Photonics, 6(2), 44. https://doi.org/10.3390/photonics6020044