Modeling and Analysis of SOI Gratings-Based Opto-Fluidic Biosensor for Lab-on-a-Chip Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Design of Grating Coupler
2.2. Simulation Settings
3. Results and Discussion
3.1. Pressure along the Central Axis of the Channel
3.2. Power Coupling Analysis
3.3. Proposed Fabrication Steps
- SOI wafer definition with a 1 µm thick buried oxide, substrate thickness (bottom Si) 2 µm, and top Si-device layer thickness 220 nm;
- Deposition of 220 nm PR-AZ5214 photoresist using spin coating;
- UV lithography, layer 1 of mask (waveguide region) is exposed to UV to leave photoresist inside. Layer 1 is a positive mask;
- Etch Si by reactive ion etching (RIE, Cl2_CF4), etch thickness 200 nm (etch through);
- UV lithography, layer 2 of mask (gratings between waveguides) is exposed to UV to leave photoresist outside. Layer 2 is a negative mask;
- Etch Si by RIE (Cl2_CF4), etch thickness 150 nm (partial etch);
- Etch PR-AZ5214, lift-off 220 nm thick PR-AZ5214.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lipson, M. Guiding, modulating and emitting light on silicon—Challenges and opportunities. J. Lightwave Technol. 2005, 23, 4222–4238. [Google Scholar] [CrossRef]
- Luan, E.; Shoman, H.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon Photonic Biosensors Using Label-Free Detection. Sensors 2018, 18, 3519. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, R.; Kumar, A. Refractive index sensing using silicon-on-insulator waveguide based modal interferometer. Optik 2018, 156, 961–967. [Google Scholar] [CrossRef]
- Gnan, M.; Thorns, S.; Macintyre, D.S.; De La Rue, R.M.; Sorel, M. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 2008, 44, 115–116. [Google Scholar] [CrossRef]
- Komljenovic, T.; Huang, D.; Pintus, P.; Tran, M.A.; Davenport, M.L.; Bowers, J.E. Photonic Integrated Circuits Using Heterogeneous Integration on Silicon. Proc. IEEE 2018, 106, 2246–2257. [Google Scholar] [CrossRef]
- Shwetha, M.; Kumar, M.; Narayan, K. Modeling and simulation of opto-fluidic based Mach-Zehnder interferometer for biosensing application. In Proceedings of the Workshop on Recent Advances in Photonics (WRAP), Bangalore, India, 16–17 December 2015. [Google Scholar]
- Miller, D.A.B. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 2000, 88, 728–749. [Google Scholar] [CrossRef] [Green Version]
- Sridaran, S.; Bhave, S.A. Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates. Opt. Express 2010, 18, 3850–3857. [Google Scholar] [CrossRef] [PubMed]
- Zaoui, W.S.; Kunze, A.; Vogel, W.; Berroth, M.; Butschke, J.; Letzkus, F.; Burghartz, J. Bridging the gap between optical fibers and silicon photonic integrated circuits. Opt. Express 2014, 22, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, K.; Yoda, H.; Ohshima, A.; Ikedo, H.; Tsai, C.S. A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers. Appl. Phys. Lett. 2007, 91, 141120. [Google Scholar] [CrossRef]
- Luyssaert, B.; Bienstman, P.; Vandersteegen, P.; Dumon, P.; Baets, R. Efficient non-adiabatic planar waveguide tapers. J. Lightwave Technol. 2005, 23, 2462–2468. [Google Scholar] [CrossRef]
- Venkatesha, M.; Vismaya, K.R.; Prashanth, A.U.; Vyshnavi, M.; Narayan, K. Modeling and Analysis of SOI Grating Coupler for Bio-sensing Applications. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018; pp. 1–2. [Google Scholar]
- Sethi, P.; Haldar, A.; Selvaraja, S. Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator. Opt. Express 2017, 25, 10196–10203. [Google Scholar] [CrossRef]
- Chen, D.; Xiao, X.; Wang, L.; Yu, Y.; Liu, W.; Yang, Q. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 2015, 23, 11152–11159. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Ou, H.; Peucheret, C. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals. Opt. Lett. 2013, 38, 2732–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Zhang, Y.; Yang, S.; Novack, A.; Ding, R.; Lim, A.E.-J.; Lo, G.-Q.; Baehr-Jones, T.; Hochberg, M. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express 2013, 21, 29374–29382. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.J. Fiber Bragg grating sensors: Principles and applications. In Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing; Grattan, K.T.V., Meggitt, B.T., Eds.; Springer: Boston, MA, USA, 1998; Volume 2, ISBN 978-1-4613-7651-4. [Google Scholar]
- Errando-Herranz, C.; Colangelo, M.; Ahmed, S.; Björk, J.; Gylfason, K.B. MEMS tunable silicon photonic grating coupler for post-assembly optimization of fiber-to-chip coupling. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 293–296. [Google Scholar]
- Kim, J.H.; Park, J.H.; Han, S.K.; Bae, M.J.; Yoo, D.E.; Lee, D.W.; Park, H.H. Tunable Grating Couplers for Broadband Operation Using Thermo-Optic Effect in Silicon. IEEE Photonics Technol. Lett. 2015, 27, 2304–2307. [Google Scholar] [CrossRef]
- Galan, J.V.; Sanchis, P.; Blasco, J.; Marti, J. Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides. IEEE Photonics Technol. Lett. 2008, 20, 985–987. [Google Scholar] [CrossRef]
- Pollock, C.R. Fundamentals of Optoelectronics; Irwin: Chicago, IL, USA, 1995; ISBN 978-0-256-10104-1. [Google Scholar]
- Vivien, L.; Pascal, D.; Lardenois, S.; Marris-Morini, D.; Cassan, E.; Grillot, F.; Laval, S.; Fédéli, J.-M.; El Melhaoui, L. Light injection in SOI micro-waveguides using high-efficiency grating couplers. J. Lightwave Technol. 2006, 24, 3810–3815. [Google Scholar] [CrossRef]
- Venkatesha, M.; Chaya, B.M.; Pattnaik, P.K.; Narayan, K. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications. Micromachines 2018, 9, 134. [Google Scholar] [Green Version]
Parameter | Material | Dimensions in µm | Refractive Index | |
---|---|---|---|---|
Length | Height | N | ||
Substrate | Silicon | 10 | 2 | 3.47 |
Buried Oxide | SiO2 | 10 | 2 | 1.55 |
Input Waveguide | Silicon | 2.5 | 0.22 | 3.47 |
Output Waveguide | Silicon | 2.5 | 0.22 | 3.47 |
Grating Structure | Silicon | 5 | 0.22 | 3.47 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muniswamy, V.; Pattnaik, P.K.; Krishnaswamy, N. Modeling and Analysis of SOI Gratings-Based Opto-Fluidic Biosensor for Lab-on-a-Chip Applications. Photonics 2019, 6, 71. https://doi.org/10.3390/photonics6020071
Muniswamy V, Pattnaik PK, Krishnaswamy N. Modeling and Analysis of SOI Gratings-Based Opto-Fluidic Biosensor for Lab-on-a-Chip Applications. Photonics. 2019; 6(2):71. https://doi.org/10.3390/photonics6020071
Chicago/Turabian StyleMuniswamy, Venkatesha, Prasant Kumar Pattnaik, and Narayan Krishnaswamy. 2019. "Modeling and Analysis of SOI Gratings-Based Opto-Fluidic Biosensor for Lab-on-a-Chip Applications" Photonics 6, no. 2: 71. https://doi.org/10.3390/photonics6020071
APA StyleMuniswamy, V., Pattnaik, P. K., & Krishnaswamy, N. (2019). Modeling and Analysis of SOI Gratings-Based Opto-Fluidic Biosensor for Lab-on-a-Chip Applications. Photonics, 6(2), 71. https://doi.org/10.3390/photonics6020071