Photonic Nanojets and Whispering Gallery Modes in Smooth and Corrugated Micro-Cylinders under Point-Source Illumination
Abstract
:1. Introduction
2. Definition of the Computational Problem
3. Illumination of Cylinders of Constant Radii
4. Illumination of Corrugated Cylinders
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benincasa, D.S.; Barber, P.W.; Zhang, J.-Z.; Hsieh, W.-F.; Chang, R.K. Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers. Appl. Opt. 1987, 26, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Luk’yanchuk, B.S.; Paniagua-Domínguez, R.; Minin, I.; Minin, O.; Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [Invited]. Opt. Mater. Express 2017, 7, 1820–1847. [Google Scholar] [CrossRef]
- Geints, Y.E.; Zemlyanov, A.A.; Panina, E.K. Photonic jets from resonantly excited transparent dielectric microspheres. J. Opt. Soc. Am. B 2012, 29, 758–762. [Google Scholar] [CrossRef]
- Chen, Z.; Taflove, A.; Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 2004, 12, 1214–1220. [Google Scholar] [CrossRef]
- Heifetz, A.; Huang, K.; Sahakian, A.V.; Li, X.; Taflove, A.; Backman, V. Experimental confirmation of backscattering enhancement induced by a photonic jet. Appl. Phys. Lett. 2006, 89, 221118. [Google Scholar] [CrossRef]
- Kim, M.-S.; Scharf, T.; Mühlig, S.; Rockstuhl, C.; Herzig, H.P. Engineering photonic nanojets. Opt. Express 2011, 19, 10206–10220. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.; Hong, M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [Green Version]
- Dantham, V.R.; Bisht, P.B.; Namboodiri, C.K.R. Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere. J. Appl. Phys. 2011, 109, 103103. [Google Scholar] [CrossRef]
- Kong, S.-C.; Sahakian, A.; Taflove, A.; Backman, V. Photonic nanojet-enabled optical data storage. Opt. Express 2008, 16, 13713–13719. [Google Scholar] [CrossRef]
- Heifetz, A.; Kong, S.-C.; Sahakian, A.V.; Taflove, A.; Backman, V. Photonic nanojets. J. Comput. Theor. Nanosci. 2009, 6, 1979–1992. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Wu, X.; Shen, D. On-resonance photonic nanojets for nanoparticle trapping. Opt. Express 2019, 27, 8. [Google Scholar]
- Mahariq, I.; Kurt, H.; Tarman, H.I.; Kuzuoglu, M. Photonic nanojet analysis by spectral element method. IEEE Photonics J. 2014, 6, 1–14. [Google Scholar] [CrossRef]
- Mahariq, I.; Kurt, H. On and off optical resonance dynamics of dielectric micro-cylinders under plane wave illumination. J. Opt. Soc. Am. B 2015, 32, 1022–1030. [Google Scholar] [CrossRef]
- Yang, J.; Twardowski, P.; Gerard, P.; Duo, Y.; Fontaine, J.; Lecler, S. Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder. Opt. Express 2018, 26, 4. [Google Scholar] [CrossRef] [PubMed]
- Mahariq, I.; Kurt, H. Strong field enhancement of resonance modes in dielectric microcylinders. J. Opt. Soc. Am. B 2016, 33, 656–662. [Google Scholar] [CrossRef]
- Mahariq, I.; Astratov, V.; Kurt, H. Persistence of photonic nanojet formation under the deformation of circular boundary. J. Opt. Soc. Am. B 2016, 33, 535–542. [Google Scholar] [CrossRef]
- Mahariq, I.; Giden, I.H.; Kurt, H.; Minin, O.V.; Minin, I.V. Strong electromagnetic field localization near the surface of hemicylindrical particles. Opt. Quant. Electron. 2018, 50, 423. [Google Scholar] [CrossRef]
- Dong, A.; Su, C. Analysis of a photonic nanojet assuming a focused incident beam instead of a plane wave. J. Opt. 2014, 16, 125001. [Google Scholar] [CrossRef]
- Salhi, M.; Evans, P.G. Photonic Nanojet as a Result of a Focused Near-Field Diffraction. J. Opt. Soc. Am. B 2019, 36, 1031. [Google Scholar] [CrossRef]
- Mahariq, I.; Eti, N.; Kurt, H. Engineering Photonic Nanojet Generation; Computational Electromagnetics International Workshop (CEM): Izmir, Turkey, 2015; pp. 1–4. [Google Scholar]
- Minin, I.V.; Liu, C.-Y.; Geints, Y.E.; Minin, O.V. Recent Advances in Integrated Photonic Jet-Based Photonics. Photonics 2020, 7, 41. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Geints, Y.E. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review. Annalen der Physik 2015, 527, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Bonakdar, A.; Rezaei, M.; Brown, R.L.; Fathipour, V.; Dexheimer, E.; Jang, S.J.; Mohseni, H. Deep-UV microsphere projection lithography. Opt. Lett. 2015, 40, 2537–2540. [Google Scholar] [CrossRef] [PubMed]
- Bonakdar, A.; Rezaei, M.; Dexheimer, E.; Mohseni, H. High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography. Nanotechnology 2015, 27, 3. [Google Scholar] [CrossRef] [PubMed]
- Biccari, F.; Hamilton, T.; Ristori, A.; Sanguinetti, S.; Bietti, S.; Gurioli, M.; Mohseni, H. Quantum dots luminescence collection enhancement and nanoscopy by dielectric microspheres. Particle Particle Syst. Charact. 2020, 37, 1900431. [Google Scholar] [CrossRef]
- Darafsheh, A.; Bollinger, D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Opt. Commun. 2017, 402, 270–275. [Google Scholar] [CrossRef]
- Darafsheh, A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Opt. Lett. 2017, 42, 735–738. [Google Scholar] [CrossRef]
- Darafsheh, A.; Guardiola, C.; Palovcak, A.; Finlay, J.C.; Cárabe, A. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett. 2015, 40, 5–8. [Google Scholar] [CrossRef]
- Gérard, D.; Devilez, A.; Aouani, H.; Stout, B.; Bonod, N.; Wenger, J.; Popov, E.; Rigneault, H. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere. J. Opt. Soc. Am. B 2009, 26, 1473–1478. [Google Scholar] [CrossRef]
- Devilez, A.; Bonod, N.; Wenger, J.; Gérard, D.; Stout, B.; Rigneault, H.; Popov, E. Three-dimensional subwavelength confinement of light with dielectric microspheres. Opt. Express 2009, 17, 2089–2094. [Google Scholar] [CrossRef] [Green Version]
- Chongchang, Y.; Cheng, Q.; Wen, Z.; Yue, W.; Huaping, W. The design and manufacture of profiled multi-channeled hollow polyester fibers. Fibers Polym. 2009, 10, 657–661. [Google Scholar]
- Podrazký, O.; Kašík, I.; Peterka, P.; Aubrecht, J.; Cajzl, J.; Proboštová, J.; Matějec, V. Preparation of optical fibers with non-circular cross section for fiber lasers and amplifiers. Proc. SPIE 2015, 9450, 94501A. [Google Scholar]
- Gong, S.-H.; Ko, S.-M.; Jang, M.-H.; Cho, Y.-H. Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire. Nano Lett. 2015, 15, 4517–4524. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Dai, J.; Zhu, G.; Zhu, G.; Lin, Y.; Li, J.; Shi, Z. Whisperinggallery mode lasing in ZnO microcavities. Laser Photonics Rev. 2014, 8, 469–494. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, Y.; Zhou, W.; Yu, M.; Urbach, H.P.; Wu, Y. Effects of Whispering Gallery Mode in Microsphere Super-Resolution Imaging. Appl. Phys. B 2017, 123, 9. [Google Scholar] [CrossRef]
- Mehdizadeh, O.Z.; Paraschivoiu, M. Investigation of a twodimensional spectral element method for Helmholtz’s equation. J. Comput. Phys. 2003, 189, 111–129. [Google Scholar] [CrossRef]
- Lee, J.; Xiao, T.; Liu, Q.H. A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields. IEEE Trans. Microw. Theory Tech. 2006, 54, 4141–4148. [Google Scholar] [CrossRef]
- Mahariq, I.; Kuzuoğlu, M.; Tarman, H.I. On the attenuation of perfectly matched layer in electromagnetic scattering problems with spectral element method. Appl. Comput. Electromagn. Soc. J. 2014, 29, 701–710. [Google Scholar]
- Mahariq, I.; Kurt, H.; Kuzuoğlu, M. Questioning degree of accuracy offered by the spectral element method in computational electromagnetics. Appl. Comput. Electromagn. Soc. J. 2015, 30, 698–705. [Google Scholar]
- Mahariq, I.; Erciyas, A. A spectral element method for the solution of magnetostatic fields. Turk. J. Elec. Eng. Comp. Sci. 2017, 25, 2922–2932. [Google Scholar] [CrossRef] [Green Version]
- Mahariq, I. On the application of the spectral element method in electromagnetic problems involving domain decomposition. Turk. J. Elec. Eng. Comp. Sci. 2007, 25, 1059–1069. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahariq, I.; Abdeljawad, T.; Karar, A.S.; Alboon, S.A.; Kurt, H.; Maslov, A.V. Photonic Nanojets and Whispering Gallery Modes in Smooth and Corrugated Micro-Cylinders under Point-Source Illumination. Photonics 2020, 7, 50. https://doi.org/10.3390/photonics7030050
Mahariq I, Abdeljawad T, Karar AS, Alboon SA, Kurt H, Maslov AV. Photonic Nanojets and Whispering Gallery Modes in Smooth and Corrugated Micro-Cylinders under Point-Source Illumination. Photonics. 2020; 7(3):50. https://doi.org/10.3390/photonics7030050
Chicago/Turabian StyleMahariq, Ibrahim, Thabet Abdeljawad, Abdullah S. Karar, Shadi A. Alboon, Hamza Kurt, and Alexey V. Maslov. 2020. "Photonic Nanojets and Whispering Gallery Modes in Smooth and Corrugated Micro-Cylinders under Point-Source Illumination" Photonics 7, no. 3: 50. https://doi.org/10.3390/photonics7030050
APA StyleMahariq, I., Abdeljawad, T., Karar, A. S., Alboon, S. A., Kurt, H., & Maslov, A. V. (2020). Photonic Nanojets and Whispering Gallery Modes in Smooth and Corrugated Micro-Cylinders under Point-Source Illumination. Photonics, 7(3), 50. https://doi.org/10.3390/photonics7030050