Study of the Optical Properties of Multi-Particle Phosphors by the FDTD and Ray Tracing Combined Method
Abstract
:1. Introduction
2. Model and Simulation
3. Results and Discussion
3.1. Double Particles
3.2. Multi-Particle Phosphor Configurations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shudong, Y.; Yong, T.; Zongtao, L.; Kaihang, C.; Xinrui, D.; Binhai, Y. Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites. Photonics Res. 2018, 6, 90–98. [Google Scholar] [CrossRef]
- Ding, X.; Tang, Y.; Li, Z.; Li, J.; Xie, Y.; Lin, L. Multichip LED Modules With V-Groove Surfaces for Light Extraction Efficiency Enhancements Considering Roughness Scattering. IEEE Trans. Electron Devices 2017, 64, 182–188. [Google Scholar] [CrossRef]
- Mitterhofer, S.; Korošak, Ž.; Rojec, Ž.; Jankovec, M. Development and Analysis of a Modular LED Array Light Source. Photonics 2020, 7, 92. [Google Scholar] [CrossRef]
- Shao, C.; Wu, K.; Li, Z.; Yu, B.; Ding, X. Investigating of different arrangement configurations of phosphor particles by using the Finite-Difference Time-Domain method. In Proceedings of the 2019 20th International Conference on Electronic Packaging Technology, ICEPT 2019, Hong Kong, China, 12–15 August 2019. [Google Scholar]
- Yu, S.; Fritz, B.; Johnsen, S.; Busko, D.; Richards, B.S.; Hippler, M.; Wiegand, G.; Tang, Y.; Li, Z.; Lemmer, U. Enhanced Photoluminescence in Quantum Dots–Porous Polymer Hybrid Films Fabricated by Microcellular Foaming. Adv. Opt. Mater. 2019, 7, 1900223. [Google Scholar] [CrossRef]
- Luo, X.; Song, W.; Wang, H.; Sun, Y.; Li, S. Coaxial semipolar InGaN/GaN microwire array LED with substantially suppressed efficiency droop. J. Lumin. 2019, 221, 117014. [Google Scholar] [CrossRef]
- Yu, S.; Yu, J.; Chen, J.; Ding, X.; Li, J.; Rao, L.; Tang, Y.; Li, Z. Numerical study on the scattering property of porous polymer structures via supercritical CO2 microcellular foaming. Appl. Opt. 2020, 59, 4533–4541. [Google Scholar] [CrossRef]
- Qian, K.Y.; Ma, J.; Fu, W.; Luo, Y. Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory. Acta Phys. Sin. 2012, 61. [Google Scholar] [CrossRef]
- Xu, Y. Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 1995, 34, 4573–4588. [Google Scholar] [CrossRef]
- Yu, X.; Shu, W.; Hu, R.; Xie, B.; Ma, Y.; Luo, X. Dynamic phosphor sedimentation effect on the optical performance of White LEDs. IEEE Photonics Technol. Lett. 2017, 29, 1195–1198. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Li, Z.; Ding, X.; Yuan, D.; Yu, B. Study on scattering and absorption properties of quantum-dot-converted elements for light-emitting diodes using finite-difference time-domain method. Materials 2017, 10, 1264. [Google Scholar] [CrossRef] [Green Version]
- Sommer, C.; Hartmann, P.; Pachler, P.; Hoschopf, H.; Wenzl, F.P. The phosphor’s optical properties-chromaticity coordinate relationship of phosphor converted white LEDs. Opt. Quantum Electron. 2012, 44, 111–117. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhao, C.Y. Effect of dependent scattering on light absorption in highly scattering random media. Int. J. Heat Mass Transf. 2018, 125, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Yee, K.S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Yee, K.S.; Ingham, D.; Shlager, K. Time-Domain Extrapolation to the Far Field Based on FDTD Calculations. IEEE Trans. Antennas Propag. 1991, 39, 410–413. [Google Scholar] [CrossRef]
- Yee, K.S.; Chen, J.S.; Chang, A.H. Conformal finite-different time-domain (FDTD) with overlapping grids. IEEE Trans. Antennas Propag. 1992, 40, 1068–1075. [Google Scholar] [CrossRef]
- Yee, K.S.; Shlager, K.; Chang, A.H. An Algorithm to Implement a Surface Impedance Boundary Condition for FDTD. IEEE Trans. Antennas Propag. 1992, 40, 833–837. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J. FDTD for hydrodynamic electron fluid maxwell equations. Photonics 2015, 2, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, J.; Lin, L.; Li, Z.; Tang, Y.; Yu, B.; Ding, X. A Detailed Study on Phosphor-Converted Light-Emitting Diodes With Multi-Phosphor Configuration Using the Finite-Difference Time-Domain and Ray-Tracing Methods. IEEE J. Quantum Electron. 2015, 51, 1–10. [Google Scholar] [CrossRef]
- Jeon, S.W.; Noh, J.H.; Kim, K.H.; Kim, W.H.; Yun, C.; Song, S.B.; Kim, J.P. Phosphor modeling based on the reabsorption of Stokes shifted light. In Proceedings of the 2014 IEEE Photonics Conference, IPC 2014, San Diego, CA, USA, 12–16 October 2014; pp. 24–25. [Google Scholar]
- Ren, K.F.; Gréhan, G.; Gouesbet, G. Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: Formulation and numerical results. J. Opt. Soc. Am. A 1997, 14, 3014. [Google Scholar] [CrossRef]
- Tan, T.; Potter, M. FDTD Discrete Planewave (FDTD-DPW) Formulation for a Perfectly Matched Source in TFSF Simulations. IEEE Trans. Antennas Propag. 2010, 58, 2641–2648. [Google Scholar] [CrossRef]
- Benkler, S.; Chavannes, N.; Kuster, N. Novel FDTD huygens source enables highly complex simulation scenarios on ordinary PCs. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Charleston, SC, USA, 1–5 June 2009. [Google Scholar]
- Du, L.G.; Li, K.; Kong, F.M.; Hu, Y. Parallel 3D finite-difference time-domain method on multi-GPU systems. Int. J. Mod. Phys. C 2011, 22, 107–121. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, J.; Zhao, J.; Li, X.; Liu, L. Complex refractive indices measurements of polymers in infrared bands. J. Quant. Spectrosc. Radiat. Transf. 2020, 252. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, M.; Su, Q. Tailored photoluminescence of YAG:Ce phosphor through various methods. J. Phys. Chem. Solids 2004, 65, 845–850. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Wang, K.; Luo, X. Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging. Appl. Opt. 2010, 49, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.R. Light diffraction by a particle on an optically smooth surface. Appl. Opt. 1997, 36, 240–246. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Shao, C.; Yu, S.; Yu, B.; Li, Z.; Tang, Y. Study of the Optical Properties of Multi-Particle Phosphors by the FDTD and Ray Tracing Combined Method. Photonics 2020, 7, 126. https://doi.org/10.3390/photonics7040126
Ding X, Shao C, Yu S, Yu B, Li Z, Tang Y. Study of the Optical Properties of Multi-Particle Phosphors by the FDTD and Ray Tracing Combined Method. Photonics. 2020; 7(4):126. https://doi.org/10.3390/photonics7040126
Chicago/Turabian StyleDing, Xinrui, Changkun Shao, Shudong Yu, Binhai Yu, Zongtao Li, and Yong Tang. 2020. "Study of the Optical Properties of Multi-Particle Phosphors by the FDTD and Ray Tracing Combined Method" Photonics 7, no. 4: 126. https://doi.org/10.3390/photonics7040126
APA StyleDing, X., Shao, C., Yu, S., Yu, B., Li, Z., & Tang, Y. (2020). Study of the Optical Properties of Multi-Particle Phosphors by the FDTD and Ray Tracing Combined Method. Photonics, 7(4), 126. https://doi.org/10.3390/photonics7040126