Understanding the Seeding Pulse-Induced Optical Amplification in Pumped by 800 NM Femtosecond Laser Pulses
Abstract
:1. Introduction
2. Experimental Setup
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yao, J.; Zeng, B.; Xu, H.; Li, G.; Chu, W.; Ni, J.; Zhang, H.; Chin, S.L.; Cheng, Y.; Xu, Z. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 2011, 84, 051802. [Google Scholar] [CrossRef] [Green Version]
- Azarm, A.; Corkum, P.; Polynkin, P. Optical gain in rotationally excited nitrogen molecular ions. Phys. Rev. A 2017, 96, 051401. [Google Scholar] [CrossRef] [Green Version]
- Kartashov, D.; Möhring, J.; Andriukaitis, G.; Pugžlys, A.; Zheltikov, A.; Motzkus, M.; Baltuška, A. Stimulated amplification of UV emission in a femtosecond filament using adaptive control. In Proceedings of the CLEO, SAN Jose, CA, USA, 6–11 May 2012; p. QTh4E.6. [Google Scholar]
- Liu, Y.; Brelet, Y.; Point, G.; Houard, A.; Mysyrowicz, A. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 2013, 21, 22791–22798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Lötstedt, E.; Iwasaki, A.; Yamanouchi, K. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling. Nat. Commun. 2015, 6, 8347. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Miao, Z.; Zhang, L.; Liang, Q.; Lei, M.; Jiang, H.; Liu, Y.; Gong, Q.; Wu, C. Vibrational and electronic excitation of ionized nitrogen molecules in intense laser fields. Phys. Rev. A 2017, 96, 043422. [Google Scholar] [CrossRef]
- Yao, J.; Li, G.; Jing, C.; Zeng, B.; Chu, W.; Ni, J.; Zhang, H.; Xie, H.; Zhang, C.; Li, H.; et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses. New J. Phys. 2013, 15, 023046. [Google Scholar] [CrossRef]
- Arissian, L.; Kamer, B.; Rastegari, A.; Villeneuve, D.M.; Diels, J.C. Transient gain from in light filaments. Phys. Rev. A 2018, 98, 053438. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Daigle, J.F.; Ju, J.; Yuan, S.; Li, R.; Chin, S.L. Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air. Phys. Rev. A 2013, 88, 053429. [Google Scholar] [CrossRef]
- Zhang, X.; Danylo, R.; Fan, Z.; Ding, P.; Kou, C.; Liang, Q.; Houard, A.; Tikhonchuk, V.; Mysyrowicz, A.; Liu, Y. Backward lasing of singly ionized nitrogen ions pumped by femtosecond laser pulses. Appl. Phys. B 2020, 126, 53. [Google Scholar] [CrossRef] [Green Version]
- Kartashov, D.; Ališauskas, S.; Andriukaitis, G.; Pugžlys, A.; Shneider, M.; Zheltikov, A.; Chin, S.L.; Baltuška, A. Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 2012, 86, 033831. [Google Scholar] [CrossRef]
- Mitryukovskiy, S.; Liu, Y.; Ding, P.; Houard, A.; Mysyrowicz, A. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses. Opt. Express 2014, 22, 12750–12759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, P.; Oliva, E.; Houard, A.; Mysyrowicz, A.; Liu, Y. Lasing dynamics of neutral nitrogen molecules in femtosecond filaments. Phys. Rev. A 2016, 94, 043824. [Google Scholar] [CrossRef]
- Dogariu, A.; Miles, R.B. Three-photon femtosecond pumped backwards lasing in argon. Opt. Express 2016, 24, A544–A552. [Google Scholar] [CrossRef]
- Dogariu, A.; Michael, J.B.; Scully, M.O.; Miles, R.B. High-gain backward lasing in air. Science 2011, 331, 442–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurain, A.; Scheller, M.; Polynkin, P. Low-threshold bidirectional air lasing. Phys. Rev. Lett. 2014, 113, 253901. [Google Scholar] [CrossRef] [PubMed]
- Dogariu, A.; Miles, R. Backwards nitrogen double lasing in air for remote trace detection. In Proceedings of the Imaging and Application Optics, OSA, Seattle, DC, USA, 13–17 July 2014; p. LW2D.3. [Google Scholar]
- Malevich, P.N.; Maurer, R.; Kartashov, D.; Ališauskas, S.; Lanin, A.A.; Zheltikov, A.M.; Marangoni, M.; Cerullo, G.; Baltuška, A.; Pugžlys, A. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament. Opt. Lett. 2015, 40, 2469–2472. [Google Scholar] [CrossRef]
- Bood, J.; Aldén, M. Diagnostic Properties of Two-Photon-Pumped Stimulated Emission in Atmospheric Species. In Air Lasing, 1st ed.; Polynkin, P., Cheng, Y., Eds.; Springer Series in Optical Sciences 208; Springer: Cham, Switzerland, 2018; pp. 1–18. [Google Scholar]
- Yuan, L.; Liu, Y.; Yao, J.; Cheng, Y. Recent advances in air lasing: A perspective from quantum coherence. Adv. Quantum Technol. 2019, 2, 1900080. [Google Scholar] [CrossRef]
- Yao, J.; Jiang, S.; Chu, W.; Zeng, B.; Wu, C.; Lu, R.; Li, Z.; Xie, H.; Li, G.; Yu, C.; et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett. 2016, 116, 143007. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Lytova, M.; Morales, F.; Haessler, S.; Smirnova, O.; Spanner, M.; Ivanov, M. Rotational quantum beat lasing without inversion. Optica 2020, 7, 586–592. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, H.; Li, G.; Wang, X.; Lei, H.; Zhao, J.; Chen, Z.; Yao, J.; Cheng, Y.; Zhao, Z. Sub-cycle coherent control of ionic dynamics via transient ionization injection. Commun. Phys. 2020, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Mysyrowicz, A.; Danylo, R.; Houard, A.; Tikhonchuk, V.; Zhang, X.; Fan, Z.; Liang, Q.; Zhuang, S.; Yuan, L.; Liu, Y. Lasing without population inversion in . APL Photonics 2019, 4, 110807. [Google Scholar] [CrossRef]
- Britton, M.; Laferriere, P.; Ko, D.H.; Li, Z.; Kong, F.; Brown, G.; Naumov, A.; Zhang, C.; Arissian, L.; Corkum, P.B. Testing the role of recollision in air lasing. Phys. Rev. Lett. 2018, 120, 133208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Jing, C.; Yao, J.; Li, G.; Zeng, B.; Chu, W.; Ni, J.; Xie, H.; Xu, H.; Chin, S.L.; et al. Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field. Phys. Rev. X 2013, 3, 041009. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ding, P.; Lambert, G.; Houard, A.; Tikhonchuk, V.T.; Mysyrowicz, A. Recollision-induced superradiance of ionized nitrogen molecule. Phys. Rev. Lett. 2015, 115, 133203. [Google Scholar] [CrossRef] [PubMed]
- Britton, M.; Lytova, M.; Laferrière, P.; Peng, P.; Morales, F.; Ko, D.H.; Richter, M.; Polynkin, P.; Villeneuve, D.M.; Zhang, C.; et al. Short- and long-term gain dynamics in air lasing. Phys. Rev. A 2019, 100, 013406. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Jing, C.; Zeng, B.; Xie, H.; Yao, J.; Chu, W.; Ni, J.; Zhang, H.; Xu, H.; Cheng, Y.; et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization. Phys. Rev. A 2014, 89, 033833. [Google Scholar] [CrossRef] [Green Version]
- Borri, P.; Langbein, W.; Hvam, J.M.; Heinrichsdorff, F.; Mao, M.-H.; Bimberg, D. Ultrafast gain dynamics in InAs–InGaAs quantum-dot amplifiers. IEEE Photonics Technol. Lett. 2000, 12, 594–596. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, S.; Oliva, E.; Li, L.; Berrill, M.; Yin, L.; Nejdl, J.; Luther, B.M.; Proux, C.; Le, T.T.; et al. Gain dynamics in a soft-X-ray laser amplifier perturbed by a strong injected X-ray field. Nat. Photonics 2014, 8, 381–384. [Google Scholar] [CrossRef]
- Zhang, A.; Liang, Q.; Lei, M.; Yuan, L.; Liu, Y.; Fan, Z.; Zhang, X.; Zhuang, S.; Wu, C.; Gong, Q.; et al. Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses. Opt. Express 2019, 27, 12638–12646. [Google Scholar] [CrossRef]
- Chen, J.; Yao, J.; Zhang, H.; Liu, Z.; Xu, B.; Chu, W.; Qiao, L.; Wang, Z.; Fatome, J.; Faucher, O.; et al. Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field. Phys. Rev. A 2019, 100, 031402. [Google Scholar] [CrossRef]
- Maki, J.J.; Malcuit, M.S.; Raymer, M.G.; Boyd, R.W.; Drummond, P.D. Influence of collisional dephasing process on superfluorescence. Phys. Rev. A 1989, 40, 5135. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Hokr, B.H.; Traverso, A.J.; Voronine, D.V.; Rostovtsev, Y.; Sokolov, A.V.; Scully, M. Theoretical analysis of the coherence-brightened laser in air. Phys. Rev. A 2013, 87, 023826. [Google Scholar] [CrossRef] [Green Version]
- Carlson, N.W.; Jackson, D.J.; Schawlow, A.L.; Gross, M. Superradiance triggering spectroscopy. Opt. Commun. 1980, 32, 350–354. [Google Scholar] [CrossRef]
- MacGillivary, J.C.; Feld, M.S. Theory of superradiance in an extended, optically thick medium. Phys. Rev A 1976, 14, 1169. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Zhang, X.; Lu, Q.; Luo, Y.; Liang, Q.; Yuan, L.; Zhang, Z.; Liu, Y. Understanding the Seeding Pulse-Induced Optical Amplification in Pumped by 800 NM Femtosecond Laser Pulses. Photonics 2020, 7, 99. https://doi.org/10.3390/photonics7040099
Fan Z, Zhang X, Lu Q, Luo Y, Liang Q, Yuan L, Zhang Z, Liu Y. Understanding the Seeding Pulse-Induced Optical Amplification in Pumped by 800 NM Femtosecond Laser Pulses. Photonics. 2020; 7(4):99. https://doi.org/10.3390/photonics7040099
Chicago/Turabian StyleFan, Zhengquan, Xiang Zhang, Qi Lu, Yu Luo, Qingqing Liang, Luqi Yuan, Zhedong Zhang, and Yi Liu. 2020. "Understanding the Seeding Pulse-Induced Optical Amplification in Pumped by 800 NM Femtosecond Laser Pulses" Photonics 7, no. 4: 99. https://doi.org/10.3390/photonics7040099
APA StyleFan, Z., Zhang, X., Lu, Q., Luo, Y., Liang, Q., Yuan, L., Zhang, Z., & Liu, Y. (2020). Understanding the Seeding Pulse-Induced Optical Amplification in Pumped by 800 NM Femtosecond Laser Pulses. Photonics, 7(4), 99. https://doi.org/10.3390/photonics7040099