III-Nitride Light-Emitting Devices
Abstract
:1. Introduction
2. III-Nitride-Based LEDs
2.1. Early Development of Nitride LEDs
2.2. First-Generation Nitride LEDs
2.3. Next-Generation High-Performance Nitride LEDs
2.4. Nitride-Based White LEDs
2.5. Nitride-Based UV LEDs
2.6. Nitride Based Micro-LEDs
2.7. Nitride LEDs for Visible Light Communication
2.8. Temperature Dependence and Reliability of Nitride LEDs
3. III-Nitride Based Lasers
3.1. Early Development of Nitride Lasers
3.2. Performance Enhancement of Blue Laser Diodes
3.3. Nitride-Based Long-Wavelength Laser Diodes
3.4. Nitride Based Ultraviolet Laser Diodes
3.5. Nitride-Based VCSELs
4. Next-Generation Nitride Emitters
4.1. Nitride-Based Exciton-Polariton Lasers
4.2. Nitride-Based Spin LEDs and Lasers
4.3. Nanostructured Nitride Emitters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.; Ghods, A.; Saravade, V.G.; Patel, P.V.; Yunghans, K.L.; Ferguson, C.; Feng, Y.; Kucukgok, B.; Lu, N.; Ferguson, I.T. The Current and Emerging Applications of the III-Nitrides. ECS J. Solid State Sci. Technol. 2017, 6, Q149. [Google Scholar] [CrossRef] [Green Version]
- III-Nitride Semiconductor Optoelectronics, Volume 96—1st Edition. Available online: https://www.elsevier.com/books/iii-nitride-semiconductor-optoelectronics/mi/978-0-12-809584-3 (accessed on 15 August 2021).
- Manasreh, M.O. III-Nitride Semiconductors: Electrical, Structural and Defects Properties; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Maruska, H.P.; Tietjen, J.J. The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN. Appl. Phys. Lett. 1969, 15, 327–329. [Google Scholar] [CrossRef]
- Pankove, J.I.; Miller, E.A.; Berkeyheiser, J.E. GaN Blue Light-Emitting Diodes. J. Lumin. 1972, 5, 84–86. [Google Scholar] [CrossRef]
- Pankove, J.I. Low-Voltage Blue Electroluminescence in GaN. IEEE Trans. Electron Devices 1975, 22, 721–724. [Google Scholar] [CrossRef]
- Boulou, M.; Furtado, M.; Jacob, G. Light-Emitting Diodes Based on GaN. Philips Tech. Rev. 1977, 37, 237–240. [Google Scholar]
- Maruska, H.P.; Rhines, W.C.; Stevenson, D.A. Preparation of Mg-Doped GaN Diodes Exhibiting Violet Electroluminescence. Mater. Res. Bull. 1972, 7, 777–781. [Google Scholar] [CrossRef]
- Lagerstedt, O.; Monemar, B.; Gislason, H. Properties of GaN Tunneling MIS Light-emitting Diodes. J. Appl. Phys. 1978, 49, 2953–2957. [Google Scholar] [CrossRef]
- Kawabata, T.; Matsuda, T.; Koike, S. GaN Blue Light Emitting Diodes Prepared by Metalorganic Chemical Vapor Deposition. J. Appl. Phys. 1984, 56, 2367–2368. [Google Scholar] [CrossRef]
- Mandel, G. Self-Compensation Limited Conductivity in Binary Semiconductors. I. Theory. Phys. Rev. 1964, 134, A1073–A1079. [Google Scholar] [CrossRef]
- Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer. Appl. Phys. Lett. 1986, 48, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Amano, H.; Akasaki, I.; Hiramatsu, K.; Koide, N.; Sawaki, N. Effects of the Buffer Layer in Metalorganic Vapour Phase Epitaxy of GaN on Sapphire Substrate. Thin Solid Film. 1988, 163, 415–420. [Google Scholar] [CrossRef]
- Akasaki, I.; Amano, H.; Koide, Y.; Hiramatsu, K.; Sawaki, N. Effects of Ain Buffer Layer on Crystallographic Structure and on Electrical and Optical Properties of GaN and Ga1−xAlxN (0 <x ≦ 0.4) Films Grown on Sapphire Substrate by MOVPE. J. Cryst. Growth 1989, 98, 209–219. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. In Situ Monitoring and Hall Measurements of GaN Grown with GaN Buffer Layers. J. Appl. Phys. 1992, 71, 5543–5549. [Google Scholar] [CrossRef]
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys. 1989, 28, L2112. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.S.M.; Mukai, T.M.T. Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers. Jpn. J. Appl. Phys. 1991, 30, L1708. [Google Scholar] [CrossRef]
- Vechten, J.A.V.; Zook, J.D.; Horning, R.D.; Goldenberg, B. Defeating Compensation in Wide Gap Semiconductors by Growing in H That Is Removed by Low Temperature De-Ionizing Radiation. Jpn. J. Appl. Phys. 1992, 31, 3662. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.M.T.; Senoh, M.S.M. High-Power GaN P-N Junction Blue-Light-Emitting Diodes. Jpn. J. Appl. Phys. 1991, 30, L1998. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M.S.M.; Iwasa, N.I.N. Thermal Annealing Effects on P-Type Mg-Doped GaN Films. Jpn. J. Appl. Phys. 1992, 31, L139. [Google Scholar] [CrossRef]
- Osamura, K.; Naka, S.; Murakami, Y. Preparation and Optical Properties of Ga1−xInxN Thin Films. J. Appl. Phys. 1975, 46, 3432–3437. [Google Scholar] [CrossRef]
- Nagatomo, T.; Kuboyama, T.; Minamino, H.; Omoto, O. Properties of Ga1-XInxN Films Prepared by MOVPE. Jpn. J. Appl. Phys. 1989, 28, L1334. [Google Scholar] [CrossRef]
- Yoshimoto, N.; Matsuoka, T.; Sasaki, T.; Katsui, A. Photoluminescence of InGaN Films Grown at High Temperature by Metalorganic Vapor Phase Epitaxy. Appl. Phys. Lett. 1991, 59, 2251–2253. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.N.S.; Mukai, T.M.T. High-Quality InGaN Films Grown on GaN Films. Jpn. J. Appl. Phys. 1992, 31, L1457. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.S.M.; Mukai, T.M.T. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes. Jpn. J. Appl. Phys. 1993, 32, L8. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class High-brightness InGaN/AlGaN Double-heterostructure Blue-light-emitting Diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Iwasa, N.; Nagahama, S.N.S. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys. 1995, 34, L797. [Google Scholar] [CrossRef]
- Lester, S.D.; Ponce, F.A.; Craford, M.G.; Steigerwald, D.A. High Dislocation Densities in High Efficiency GaN-based Light-emitting Diodes. Appl. Phys. Lett. 1995, 66, 1249–1251. [Google Scholar] [CrossRef]
- Kapolnek, D.; Wu, X.H.; Heying, B.; Keller, S.; Keller, B.P.; Mishra, U.K.; DenBaars, S.P.; Speck, J.S. Structural Evolution in Epitaxial Metalorganic Chemical Vapor Deposition Grown GaN Films on Sapphire. Appl. Phys. Lett. 1995, 67, 1541–1543. [Google Scholar] [CrossRef]
- Heying, B.; Wu, X.H.; Keller, S.; Li, Y.; Kapolnek, D.; Keller, B.P.; DenBaars, S.P.; Speck, J.S. Role of Threading Dislocation Structure on the X-ray Diffraction Peak Widths in Epitaxial GaN Films. Appl. Phys. Lett. 1996, 68, 643–645. [Google Scholar] [CrossRef]
- Yoshida, T.; Oshima, Y.; Eri, T.; Ikeda, K.; Yamamoto, S.; Watanabe, K.; Shibata, M.; Mishima, T. Fabrication of 3-in GaN Substrates by Hydride Vapor Phase Epitaxy Using Void-Assisted Separation Method. J. Cryst. Growth 2008, 310, 5–7. [Google Scholar] [CrossRef]
- Fujito, K.; Kubo, S.; Fujimura, I. Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE. MRS Bull. 2009, 34, 313–317. [Google Scholar] [CrossRef]
- Dwiliński, R.; Doradziński, R.; Garczyński, J.; Sierzputowski, L.P.; Puchalski, A.; Kanbara, Y.; Yagi, K.; Minakuchi, H.; Hayashi, H. Excellent Crystallinity of Truly Bulk Ammonothermal GaN. J. Cryst. Growth 2008, 310, 3911–3916. [Google Scholar] [CrossRef]
- Geng, H.; Sunakawa, H.; Sumi, N.; Yamamoto, K.; Yamaguchi, A.A.; Usui, A. Growth and Strain Characterization of High Quality GaN Crystal by HVPE. J. Cryst. Growth 2012, 350, 44–49. [Google Scholar] [CrossRef]
- Ehrentraut, D.; Pakalapati, R.T.; Kamber, D.S.; Jiang, W.; Pocius, D.W.; Downey, B.C.; McLaurin, M.; D’Evelyn, M.P. High Quality, Low Cost Ammonothermal Bulk GaN Substrates. Jpn. J. Appl. Phys. 2013, 52, 08JA01. [Google Scholar] [CrossRef]
- Chakraborty, A.; Haskell, B.A.; Keller, S.; Speck, J.S.; Denbaars, S.P.; Nakamura, S.; Mishra, U.K. Demonstration of Nonpolar M-Plane InGaN/GaN Light-Emitting Diodes on Free-Standing m-Plane GaN Substrates. Jpn. J. Appl. Phys. 2005, 44, L173. [Google Scholar] [CrossRef]
- Schmidt, M.C.; Kim, K.-C.; Sato, H.; Fellows, N.; Masui, H.; Nakamura, S.; DenBaars, S.P.; Speck, J.S. High Power and High External Efficiency M-Plane InGaN Light Emitting Diodes. Jpn. J. Appl. Phys. 2007, 46, L126. [Google Scholar] [CrossRef]
- Zhao, Y.; Sonoda, J.; Pan, C.-C.; Brinkley, S.; Koslow, I.; Fujito, K.; Ohta, H.; DenBaars, S.P.; Nakamura, S. 30-MW-Class High-Power and High-Efficiency Blue Semipolar (1011) InGaN/GaN Light-Emitting Diodes Obtained by Backside Roughening Technique. Appl. Phys. Express 2010, 3, 102101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Tanaka, S.; Pan, C.-C.; Fujito, K.; Feezell, D.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. High-Power Blue-Violet Semipolar (2021) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/Cm2. Appl. Phys. Express 2011, 4, 082104. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Physica Status Solidi (A) 2019, 216, 1800628. [Google Scholar] [CrossRef] [Green Version]
- Reshchikov, M.A.; McNamara, J.D.; Zhang, F.; Monavarian, M.; Usikov, A.; Helava, H.; Makarov, Y.; Morkoç, H. Zero-Phonon Line and Fine Structure of the Yellow Luminescence Band in GaN. Phys. Rev. B 2016, 94, 035201. [Google Scholar] [CrossRef] [Green Version]
- Reshchikov, M.A.; Albarakati, N.M.; Monavarian, M.; Avrutin, V.; Morkoç, H. Thermal Quenching of the Yellow Luminescence in GaN. J. Appl. Phys. 2018, 123, 161520. [Google Scholar] [CrossRef]
- Weimann, N.G.; Eastman, L.F.; Doppalapudi, D.; Ng, H.M.; Moustakas, T.D. Scattering of Electrons at Threading Dislocations in GaN. J. Appl. Phys. 1998, 83, 3656–3659. [Google Scholar] [CrossRef]
- Hino, T.; Tomiya, S.; Miyajima, T.; Yanashima, K.; Hashimoto, S.; Ikeda, M. Characterization of Threading Dislocations in GaN Epitaxial Layers. Appl. Phys. Lett. 2000, 76, 3421–3423. [Google Scholar] [CrossRef]
- Stampfl, C.; Van de Walle, C.G. Energetics and Electronic Structure of Stacking Faults in AlN, GaN, and InN. Phys. Rev. B 1998, 57, R15052–R15055. [Google Scholar] [CrossRef] [Green Version]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White Light Emitting Diodes with Super-High Luminous Efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Cich, M.J.; Aldaz, R.I.; Chakraborty, A.; David, A.; Grundmann, M.J.; Tyagi, A.; Zhang, M.; Steranka, F.M.; Krames, M.R. Bulk GaN Based Violet Light-Emitting Diodes with High Efficiency at Very High Current Density. Appl. Phys. Lett. 2012, 101, 223509. [Google Scholar] [CrossRef]
- Hurni, C.A.; David, A.; Cich, M.J.; Aldaz, R.I.; Ellis, B.; Huang, K.; Tyagi, A.; DeLille, R.A.; Craven, M.D.; Steranka, F.M.; et al. Bulk GaN Flip-Chip Violet Light-Emitting Diodes with Optimized Efficiency for High-Power Operation. Appl. Phys. Lett. 2015, 106, 031101. [Google Scholar] [CrossRef]
- Keraly, C.L.; Kuritzky, L.; Cochet, M.; Weisbuch, C. Ray Tracing for Light Extraction Efficiency (LEE) Modeling in Nitride LEDs. III-Nitride Based Light Emit. Diodes Appl. 2017, 133, 301–340. [Google Scholar]
- Kim, J.-Y.; Jeong, T.; Lee, S.H.; Oh, H.S.; Park, H.J.; Kim, S.-M.; Baek, J.H. Light Extraction of High-Efficient Light-Emitting Diodes. III-Nitride Based Light Emit. Diodes Appl. 2017, 133, 341–361. [Google Scholar]
- Wierer, J.J.; Steigerwald, D.A.; Krames, M.R.; O’Shea, J.J.; Ludowise, M.J.; Christenson, G.; Shen, Y.-C.; Lowery, C.; Martin, P.S.; Subramanya, S.; et al. High-Power AlGaInN Flip-Chip Light-Emitting Diodes. Appl. Phys. Lett. 2001, 78, 3379–3381. [Google Scholar] [CrossRef]
- Wong, W.S.; Sands, T.; Cheung, N.W.; Kneissl, M.; Bour, D.P.; Mei, P.; Romano, L.T.; Johnson, N.M. Fabrication of Thin-Film InGaN Light-Emitting Diode Membranes by Laser Lift-Off. Appl. Phys. Lett. 1999, 75, 1360–1362. [Google Scholar] [CrossRef]
- Shchekin, O.B.; Epler, J.E.; Trottier, T.A.; Margalith, T.; Steigerwald, D.A.; Holcomb, M.O.; Martin, P.S.; Krames, M.R. High Performance Thin-Film Flip-Chip InGaN–GaN Light-Emitting Diodes. Appl. Phys. Lett. 2006, 89, 071109. [Google Scholar] [CrossRef]
- Fujii, T.; Gao, Y.; Sharma, R.; Hu, E.L.; DenBaars, S.P.; Nakamura, S. Increase in the Extraction Efficiency of GaN-Based Light-Emitting Diodes via Surface Roughening. Appl. Phys. Lett. 2004, 84, 855–857. [Google Scholar] [CrossRef]
- Haerle, V.; Hahn, B.; Kaiser, S.; Weimar, A.; Bader, S.; Eberhard, F.; Plössl, A.; Eisert, D. High Brightness LEDs for General Lighting Applications Using the New ThinGaNTM-Technology. Physica Status Solidi (A) 2004, 201, 2736–2739. [Google Scholar]
- David, A.; Hurni, C.A.; Aldaz, R.I.; Cich, M.J.; Ellis, B.; Huang, K.; Steranka, F.M.; Krames, M.R. High Light Extraction Efficiency in Bulk-GaN Based Volumetric Violet Light-Emitting Diodes. Appl. Phys. Lett. 2014, 105, 231111. [Google Scholar] [CrossRef]
- Chen, C.-H. In Ga N/ Ga N Blue Light Emitting Diodes with Modulation-Doped Al Ga N/ Ga N Heterostructure Layers. J. Vac. Sci. Technol. A: Vac. Surf. Film. 2006, 24, 1001–1004. [Google Scholar] [CrossRef]
- Hertkorn, J.; Thapa, S.B.; Wunderer, T.; Scholz, F.; Wu, Z.H.; Wei, Q.Y.; Ponce, F.A.; Moram, M.A.; Humphreys, C.J.; Vierheilig, C. Highly Conductive Modulation Doped Composition Graded P-AlGaN/(AlN)/GaN Multiheterostructures Grown by Metalorganic Vapor Phase Epitaxy. J. Appl. Phys. 2009, 106, 013720. [Google Scholar] [CrossRef]
- Korotkov, R.Y.; Gregie, J.M.; Wessels, B.W. Electrical Properties of P-Type GaN: Mg Codoped with Oxygen. Appl. Phys. Lett. 2001, 78, 222–224. [Google Scholar] [CrossRef]
- Yen, C.-H.; Liu, Y.-J.; Chen, T.-P.; Chen, L.-Y.; Tsai, T.-H.; Liu, W.-C. Study of an AlGaInP-Based Light-Emitting Diode with a Modulation-Doped Multiquantum-Well (MD-MQW) Structure. IEEE Photonics Technol. Lett. 2009, 21, 609–611. [Google Scholar]
- Muhowski, A.J.; Ricker, R.J.; Boggess, T.F.; Prineas, J.P. N-Type Anode Layer, High-Power MWIR Superlattice LED. Appl. Phys. Lett. 2017, 111, 243509. [Google Scholar] [CrossRef]
- Meneghini, M.; Meneghesso, G.; Zanoni, E. Power GaN Devices; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Chen, H.-T.; Su, C.-Y.; Tu, C.-G.; Yao, Y.-F.; Lin, C.-H.; Wu, Y.-R.; Kiang, Y.-W.; Yang, C.-C.C.C. Combining High Hole Concentration in P-GaN and High Mobility in u-GaN for High p-Type Conductivity in a p-GaN/u-GaN Alternating-Layer Nanostructure. IEEE Trans. Electron Devices 2017, 64, 115–120. [Google Scholar] [CrossRef]
- Wen, T.-C.; Chang, S.-J.; Lee, C.-T.; Lai, W.C.; Sheu, J.-K. Nitride-Based LEDs with Modulation-Doped Al/Sub 0.12/Ga/Sub 0.88/N-GaN Superlattice Structures. IEEE Trans. Electron Devices 2004, 51, 1743–1746. [Google Scholar] [CrossRef]
- Krames, M.R.; Shchekin, O.B.; Mueller-Mach, R.; Mueller, G.O.; Zhou, L.; Harbers, G.; Craford, M.G. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting. J. Disp. Technol. 2007, 3, 160–175. [Google Scholar] [CrossRef] [Green Version]
- Tsao, J.Y.; Crawford, M.H.; Coltrin, M.E.; Fischer, A.J.; Koleske, D.D.; Subramania, G.S.; Wang, G.T.; Wierer, J.J.; Karlicek, R.F., Jr. Toward Smart and Ultra-Efficient Solid-State Lighting. Adv. Opt. Mater. 2014, 2, 809–836. [Google Scholar] [CrossRef]
- Bando, K.; Sakano, K.; Noguchi, Y.; Shimizu, Y. Development of High-Bright and Pure-White LED Lamps. J. Light Vis. Environ. 1998, 22, 1_2-1_5. [Google Scholar] [CrossRef]
- Shimizu, Y. Light Emitting Device and Display. Japanese Patent Application JP-P 08-198585, 29 July 1996. [Google Scholar]
- Shimizu, Y.; Sakano, K.; Noguchi, Y.; Moriguchi, T. Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material. U.S. Patent 5,998,925, 7 December 1999. [Google Scholar]
- Weisbuch, C.; Piccardo, M.; Martinelli, L.; Iveland, J.; Peretti, J.; Speck, J.S. The Efficiency Challenge of Nitride Light-Emitting Diodes for Lighting. Physica Status Solidi (A) 2015, 212, 899–913. [Google Scholar] [CrossRef]
- Phillips, J.M.; Coltrin, M.E.; Crawford, M.H.; Fischer, A.J.; Krames, M.R.; Mueller-Mach, R.; Mueller, G.O.; Ohno, Y.; Rohwer, L.E.; Simmons, J.A. Research Challenges to Ultra-Efficient Inorganic Solid-State Lighting. Laser Photonics Rev. 2007, 1, 307–333. [Google Scholar] [CrossRef]
- Feezell, D.; Nakamura, S. Invention, Development, and Status of the Blue Light-Emitting Diode, the Enabler of Solid-State Lighting. Comptes Rendus Phys. 2018, 19, 113–133. [Google Scholar] [CrossRef]
- Hwang, J.-I.; Hashimoto, R.; Saito, S.; Nunoue, S. Development of InGaN-Based Red LED Grown on (0001) Polar Surface. Appl. Phys. Express 2014, 7, 071003. [Google Scholar] [CrossRef]
- Mitchell, B.; Dierolf, V.; Gregorkiewicz, T.; Fujiwara, Y. Perspective: Toward Efficient GaN-Based Red Light Emitting Diodes Using Europium Doping. J. Appl. Phys. 2018, 123, 160901. [Google Scholar] [CrossRef] [Green Version]
- Iida, D.; Zhuang, Z.; Kirilenko, P.; Velazquez-Rizo, M.; Najmi, M.A.; Ohkawa, K. 633-Nm InGaN-Based Red LEDs Grown on Thick Underlying GaN Layers with Reduced in-Plane Residual Stress. Appl. Phys. Lett. 2020, 116, 162101. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Gao, J.; Wang, X.; Zheng, C.; Zhang, M.; Wu, X.; Xu, L.; Ding, J.; Quan, Z.; et al. Efficient Emission of InGaN-Based Light-Emitting Diodes: Toward Orange and Red. Photon. Res. PRJ 2020, 8, 1671–1675. [Google Scholar] [CrossRef]
- Taylor, E.; Edwards, P.R.; Martin, R.W. Colorimetry and Efficiency of White LEDs: Spectral Width Dependence. Physica Status Solidi (A) 2012, 209, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Auf der Maur, M.; Pecchia, A.; Penazzi, G.; Rodrigues, W.; Di Carlo, A. Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations. Phys. Rev. Lett. 2016, 116, 027401. [Google Scholar] [CrossRef] [Green Version]
- Langer, T.; Kruse, A.; Ketzer, F.A.; Schwiegel, A.; Hoffmann, L.; Jönen, H.; Bremers, H.; Rossow, U.; Hangleiter, A. Origin of the “Green Gap”: Increasing Nonradiative Recombination in Indium-Rich GaInN/GaN Quantum Well Structures. Physica Status Solidi c 2011, 8, 2170–2172. [Google Scholar] [CrossRef]
- Shimizu, M.; Kawaguchi, Y.; Hiramatsu, K.H.K.; Sawaki, N.S.N. Metalorganic Vapor Phase Epitaxy of Thick InGaN on Sapphire Substrate. Jpn. J. Appl. Phys. 1997, 36, 3381. [Google Scholar] [CrossRef]
- Holec, D.; Costa, P.M.F.J.; Kappers, M.J.; Humphreys, C.J. Critical Thickness Calculations for InGaN/GaN. J. Cryst. Growth 2007, 303, 314–317. [Google Scholar] [CrossRef]
- Nakamura, S. Characteristics of InGaN Multiquantum-Well-Structure Laser Diodes. MRS Online Proc. Libr. (OPL) 1996, 449, 1135. [Google Scholar] [CrossRef]
- Koukitu, A.; Takahashi, N.; Taki, T.; Seki, H. Thermodynamic Analysis of the MOVPE Growth of InxGa1−xN. J. Cryst. Growth 1997, 170, 306–311. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tamura, H.; Horio, N.; Sato, H.; Taniguchi, K.; Chinone, T.; Omori, S.; Funaoka, C. Control of Emission Wavelength of GaInN Single Quantum Well, Light Emitting Diodes Grown by Metalorganic Chemical Vapor Deposition in a Split-Flow Reactor. Jpn. J. Appl. Phys. 2003, 42, 4197. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.A.H.; Akasaki, I.A.I. Quantum-Confined Stark Effect Due to Piezoelectric Fields in GaInN Strained Quantum Wells. Jpn. J. Appl. Phys. 1997, 36, L382. [Google Scholar] [CrossRef]
- Saito, S.; Hashimoto, R.; Hwang, J.; Nunoue, S. InGaN Light-Emitting Diodes on c-Face Sapphire Substrates in Green Gap Spectral Range. Appl. Phys. Express 2013, 6, 111004. [Google Scholar] [CrossRef]
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White Light-Emitting Diodes: History, Progress, and Future. Laser Photonics Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Cree First to Break 300 Lumens-Per-Watt Barrier|Cree|Wolfspeed. Available online: https://www.wolfspeed.com/company/news-events/news/cree-first-to-break-300-lumens-per-watt-barrier (accessed on 15 August 2021).
- Haitz, R.; Tsao, J.Y. Solid-State Lighting: ‘The Case’ 10 Years after and Future Prospects. Physica Status Solidi (A) 2011, 208, 17–29. [Google Scholar] [CrossRef]
- Elliott, C. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications; Navigant Consulting: Chicago, IL, USA, 2019. [Google Scholar]
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The Emergence and Prospects of Deep-Ultraviolet Light-Emitting Diode Technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, H.; Liu, Z.; Wang, D.; Xing, C.; Zhang, H.; Huang, C.; Long, S.; Sun, H. Band Engineering of III-Nitride-Based Deep-Ultraviolet Light-Emitting Diodes: A Review. J. Phys. D Appl. Phys. 2019, 53, 073002. [Google Scholar] [CrossRef]
- Amano, H.; Collazo, R.; Santi, C.D.; Einfeldt, S.; Funato, M.; Glaab, J.; Hagedorn, S.; Hirano, A.; Hirayama, H.; Ishii, R.; et al. The 2020 UV Emitter Roadmap. J. Phys. D Appl. Phys. 2020, 53, 503001. [Google Scholar] [CrossRef]
- Tsuzuki, H.; Mori, F.; Takeda, K.; Ichikawa, T.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; Yoshida, H.; Kuwabara, M. High-Performance UV Emitter Grown on High-Crystalline-Quality AlGaN Underlying Layer. Physica Status Solidi (A) 2009, 206, 1199–1204. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Lunev, A.; Deng, J.; Bilenko, Y.; Katona, T.M.; Shur, M.S.; Gaska, R.; Khan, M.A. AlGaN Deep-Ultraviolet Light-Emitting Diodes. Jpn. J. Appl. Phys. 2005, 44, 7250. [Google Scholar] [CrossRef]
- Hirayama, H.; Tsukada, Y.; Maeda, T.; Kamata, N. Marked Enhancement in the Efficiency of Deep-Ultraviolet AlGaN Light-Emitting Diodes by Using a Multiquantum-Barrier Electron Blocking Layer. Appl. Phys. Express 2010, 3, 031002. [Google Scholar] [CrossRef]
- Pernot, C.; Kim, M.; Fukahori, S.; Inazu, T.; Fujita, T.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Iwaya, M.; Kamiyama, S.; et al. Improved Efficiency of 255–280 Nm AlGaN-Based Light-Emitting Diodes. Appl. Phys. Express 2010, 3, 061004. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Gibb, S.R.; Mendrick, M.C.; Moe, C.; Wraback, M.; Schowalter, L.J. High Output Power from 260 Nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Improved Thermal Performance. Appl. Phys. Express 2011, 4, 082101. [Google Scholar] [CrossRef]
- Shatalov, M.; Sun, W.; Lunev, A.; Hu, X.; Dobrinsky, A.; Bilenko, Y.; Yang, J.; Shur, M.; Gaska, R.; Moe, C.; et al. AlGaN Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency above 10%. Appl. Phys. Express 2012, 5, 082101. [Google Scholar] [CrossRef]
- Kinoshita, T.; Hironaka, K.; Obata, T.; Nagashima, T.; Dalmau, R.; Schlesser, R.; Moody, B.; Xie, J.; Inoue, S.; Kumagai, Y.; et al. Deep-Ultraviolet Light-Emitting Diodes Fabricated on AlN Substrates Prepared by Hydride Vapor Phase Epitaxy. Appl. Phys. Express 2012, 5, 122101. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Chen, J.; Gibb, S.R.; Mendrick, M.C.; Moe, C.G.; Rodak, L.; Garrett, G.A.; Wraback, M.; Schowalter, L.J. 270 Nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 MW Continuous Wave Output Power. Appl. Phys. Express 2013, 6, 032101. [Google Scholar] [CrossRef]
- Mehnke, F.; Kuhn, C.; Guttmann, M.; Reich, C.; Kolbe, T.; Kueller, V.; Knauer, A.; Lapeyrade, M.; Einfeldt, S.; Rass, J.; et al. Efficient Charge Carrier Injection into Sub-250 Nm AlGaN Multiple Quantum Well Light Emitting Diodes. Appl. Phys. Lett. 2014, 105, 051113. [Google Scholar] [CrossRef]
- Takano, T.; Mino, T.; Sakai, J.; Noguchi, N.; Tsubaki, K.; Hirayama, H. Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency Higher than 20% at 275 Nm Achieved by Improving Light-Extraction Efficiency. Appl. Phys. Express 2017, 10, 031002. [Google Scholar] [CrossRef]
- Inoue, S.; Tamari, N.; Taniguchi, M. 150 MW Deep-Ultraviolet Light-Emitting Diodes with Large-Area AlN Nanophotonic Light-Extraction Structure Emitting at 265 Nm. Appl. Phys. Lett. 2017, 110, 141106. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Cho, S.J.; Park, J.; Gong, J.; Seo, J.-H.; Dalmau, R.; Zhao, D.; Kim, K.; Kim, M.; Kalapala, A.R.K.; et al. 226 Nm AlGaN/AlN UV LEDs Using p-Type Si for Hole Injection and UV Reflection. Appl. Phys. Lett. 2018, 113, 011111. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Towe, E. Progress in Efficient Doping of High Aluminum-Containing Group III-Nitrides. Appl. Phys. Rev. 2018, 5, 011107. [Google Scholar] [CrossRef]
- Simon, J.; Protasenko, V.; Lian, C.; Xing, H.; Jena, D. Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures. Science 2010, 327, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Zhang, Y.; Han, X.; Deng, G.; Li, P.; Yu, Y.; Chen, L.; Li, X.; Song, J. Polarization-Induced Hole Doping in N-Polar III-Nitride LED Grown by Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett. 2018, 112, 182104. [Google Scholar] [CrossRef] [Green Version]
- Shatalov, M.; Simin, G.; Adivarahan, V.; Chitnis, A.; Wu, S.; Pachipulusu, R.; Mandavilli, V.; Simin, K.; Zhang, J.P.; Yang, J.W.; et al. Lateral Current Crowding in Deep UV Light Emitting Diodes over Sapphire Substrates. Jpn. J. Appl. Phys. 2002, 41, 5083. [Google Scholar] [CrossRef]
- Hao, G.-D.; Taniguchi, M.; Tamari, N.; Inoue, S. Enhanced Wall-Plug Efficiency in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes with Uniform Current Spreadingp-Electrode Structures. J. Phys. D Appl. Phys. 2016, 49, 235101. [Google Scholar] [CrossRef]
- Hao, G.-D.; Taniguchi, M.; Tamari, N.; Inoue, S. Current Crowding and Self-Heating Effects in AlGaN-Based Flip-Chip Deep-Ultraviolet Light-Emitting Diodes. J. Phys. D Appl. Phys. 2017, 51, 035103. [Google Scholar] [CrossRef]
- Kim, M.; Fujita, T.; Fukahori, S.; Inazu, T.; Pernot, C.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Iwaya, M.; Takeuchi, T.; et al. AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates. Appl. Phys. Express 2011, 4, 092102. [Google Scholar] [CrossRef]
- Inoue, S.; Naoki, T.; Kinoshita, T.; Obata, T.; Yanagi, H. Light Extraction Enhancement of 265 Nm Deep-Ultraviolet Light-Emitting Diodes with over 90 MW Output Power via an AlN Hybrid Nanostructure. Appl. Phys. Lett. 2015, 106, 131104. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.W.; Jang, J.; Shin, I.-S.; Jin, L.; Park, J.H.; Kim, J.; Lee, J.; Noh, H.-S.; Kim, Y.-I.; et al. Improved Performance of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with Nano-Patterned AlN/Sapphire Substrates. Appl. Phys. Lett. 2017, 110, 191103. [Google Scholar] [CrossRef]
- Wang, H.; Dai, J.; Sun, H.; Mou, Y.; Cai, Y.; Liang, R.; Xu, L.; Gao, Y.; Peng, Y.; Li, J.; et al. Phosphor Glass-Coated Sapphire With Moth-Eye Microstructures for Ultraviolet-Excited White Light-Emitting Diodes. IEEE Trans. Electron Devices 2019, 66, 3007–3011. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Q.; Zhang, S.; Long, H.; Dai, J.; Sun, H.; Chen, C. Enhanced Light Extraction Efficiency of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Incorporating High-Reflective n-Type Electrode Made of Cr/Al. IEEE Trans. Electron Devices 2019, 66, 2992–2996. [Google Scholar] [CrossRef]
- Wong, M.S.; Nakamura, S.; DenBaars, S.P. Progress in High Performance III-Nitride Micro-Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 2019, 9, 015012. [Google Scholar] [CrossRef]
- Wierer, J.J., Jr.; Tansu, N. III-Nitride Micro-LEDs for Efficient Emissive Displays. Laser Photonics Rev. 2019, 13, 1900141. [Google Scholar] [CrossRef]
- Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid Crystal Display and Organic Light-Emitting Diode Display: Present Status and Future Perspectives. Light Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Huang Chen, S.-W.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.X.; Jin, S.X.; Li, J.; Shakya, J.; Lin, J.Y. III-Nitride Blue Microdisplays. Appl. Phys. Lett. 2001, 78, 1303–1305. [Google Scholar] [CrossRef] [Green Version]
- Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; DenBaars, S.P. Sustained High External Quantum Efficiency in Ultrasmall Blue III–Nitride Micro-LEDs. Appl. Phys. Express 2017, 10, 032101. [Google Scholar] [CrossRef]
- Olivier, F.; Tirano, S.; Dupré, L.; Aventurier, B.; Largeron, C.; Templier, F. Influence of Size-Reduction on the Performances of GaN-Based Micro-LEDs for Display Application. J. Lumin. 2017, 191, 112–116. [Google Scholar] [CrossRef]
- Tian, P.; McKendry, J.J.D.; Gong, Z.; Guilhabert, B.; Watson, I.M.; Gu, E.; Chen, Z.; Zhang, G.; Dawson, M.D. Size-Dependent Efficiency and Efficiency Droop of Blue InGaN Micro-Light Emitting Diodes. Appl. Phys. Lett. 2012, 101, 231110. [Google Scholar] [CrossRef]
- Shioda, T.; Yoshida, H.; Tachibana, K.; Sugiyama, N.; Nunoue, S. Enhanced Light Output Power of Green LEDs Employing AlGaN Interlayer in InGaN/GaN MQW Structure on Sapphire (0001) Substrate. Physica Status Solidi (A) 2012, 209, 473–476. [Google Scholar] [CrossRef]
- Koleske, D.D.; Fischer, A.J.; Bryant, B.N.; Kotula, P.G.; Wierer, J.J. On the Increased Efficiency in InGaN-Based Multiple Quantum Wells Emitting at 530–590nm with AlGaN Interlayers. J. Cryst. Growth 2015, 415, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Alhassan, A.I.; Farrell, R.M.; Saifaddin, B.; Mughal, A.; Wu, F.; DenBaars, S.P.; Nakamura, S.; Speck, J.S. High Luminous Efficacy Green Light-Emitting Diodes with AlGaN Cap Layer. Opt. Express OE 2016, 24, 17868–17873. [Google Scholar] [CrossRef]
- Ra, Y.-H.; Wang, R.; Woo, S.Y.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-Color Single Nanowire Pixels for Projection Displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef] [PubMed]
- Kishino, K.; Sakakibara, N.; Narita, K.; Oto, T. Two-Dimensional Multicolor (RGBY) Integrated Nanocolumn Micro-LEDs as a Fundamental Technology of Micro-LED Display. Appl. Phys. Express 2019, 13, 014003. [Google Scholar] [CrossRef]
- Tan, C.-K.; Zhang, J.; Li, X.-H.; Liu, G.; Tayo, B.O.; Tansu, N. First-Principle Electronic Properties of Dilute-As GaNAs Alloy for Visible Light Emitters. J. Disp. Technol. 2013, 9, 272–279. [Google Scholar] [CrossRef]
- Fragkos, I.E.; Tan, C.-K.; Dierolf, V.; Fujiwara, Y.; Tansu, N. Pathway Towards High-Efficiency Eu-Doped GaN Light-Emitting Diodes. Sci. Rep. 2017, 7, 14648. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-W.H.; Shen, C.-C.; Wu, T.; Liao, Z.-Y.; Chen, L.-F.; Zhou, J.-R.; Lee, C.-F.; Lin, C.-H.; Lin, C.-C.; Sher, C.-W. Full-Color Monolithic Hybrid Quantum Dot Nanoring Micro Light-Emitting Diodes with Improved Efficiency Using Atomic Layer Deposition and Nonradiative Resonant Energy Transfer. Photonics Res. 2019, 7, 416–422. [Google Scholar] [CrossRef]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a Manufacturability Perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tan, G.; Gou, F.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. Prospects and Challenges of Mini-LED and Micro-LED Displays. J. Soc. Inf. Disp. 2019, 27, 387–401. [Google Scholar] [CrossRef]
- Minh, H.L.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y. 80 Mbit/s Visible Light Communications Using Pre-Equalized White LED. In Proceedings of the 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 September 2008; pp. 1–2. [Google Scholar]
- McKendry, J.J.; Green, R.P.; Kelly, A.E.; Gong, Z.; Guilhabert, B.; Massoubre, D.; Gu, E.; Dawson, M.D. High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array. IEEE Photonics Technol. Lett. 2010, 22, 1346–1348. [Google Scholar] [CrossRef]
- McKendry, J.J.; Massoubre, D.; Zhang, S.; Rae, B.R.; Green, R.P.; Gu, E.; Henderson, R.K.; Kelly, A.E.; Dawson, M.D. Visible-Light Communications Using a CMOS-Controlled Micro-Light-Emitting-Diode Array. J. Lightwave Technol. 2011, 30, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.-L.; Chang, Y.-F.; Ho, C.-L.; Wu, M.-C. High-Speed GaN-Based Blue Light-Emitting Diodes with Gallium-Doped ZnO Current Spreading Layer. IEEE Electron Device Lett. 2013, 34, 611–613. [Google Scholar] [CrossRef]
- Quan, Z.; Dinh, D.V.; Presa, S.; Roycroft, B.; Foley, A.; Akhter, M.; O’Mahony, D.; Maaskant, P.P.; Caliebe, M.; Scholz, F.; et al. High Bandwidth Freestanding Semipolar (11–22) InGaN/GaN Light-Emitting Diodes. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.X.; Xie, E.; McKendry, J.J.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Watson, S.; Kelly, A.E.; Gu, E.; Penty, R.V. High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications. IEEE Photonics Technol. Lett. 2016, 28, 2023–2026. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.-W.; Sheu, J.-K.; Chen, C.-H.; Lin, G.-R.; Lai, W.-C. High-Speed GaN-Based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures. IEEE Electron Device Lett. 2008, 29, 158–160. [Google Scholar] [CrossRef]
- Liao, C.-L.; Ho, C.-L.; Chang, Y.-F.; Wu, C.-H.; Wu, M.-C. High-Speed Light-Emitting Diodes Emitting at 500 Nm with 463-MHz Modulation Bandwidth. IEEE Electron Device Lett. 2014, 35, 563–565. [Google Scholar] [CrossRef]
- Shi, J.-W.; Chi, K.-L.; Wun, J.-M.; Bowers, J.E.; Shih, Y.-H.; Sheu, J.-K. III-Nitride-Based Cyan Light-Emitting Diodes with GHz Bandwidth for High-Speed Visible Light Communication. IEEE Electron Device Lett. 2016, 37, 894–897. [Google Scholar] [CrossRef]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Okur, S.; Nami, M.; Rishinaramangalam, A.; Mishkat-Ul-Masabih, S.; Feezell, D. High-Speed Nonpolar InGaN/GaN LEDs for Visible-Light Communication. IEEE Photonics Technol. Lett. 2017, 29, 381–384. [Google Scholar] [CrossRef]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Rishinaramangalam, A.; Feezell, D. Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode with 1.5 GHz Modulation Bandwidth. IEEE Electron Device Lett. 2018, 39, 520–523. [Google Scholar] [CrossRef]
- Vucic, J.; Kottke, C.; Nerreter, S.; Buttner, A.; Langer, K.-D.; Walewski, J.W. White Light Wireless Transmission at 200${+} $ mb/s Net Data Rate by Use of Discrete-Multitone Modulation. IEEE Photonics Technol. Lett. 2009, 21, 1511–1513. [Google Scholar] [CrossRef]
- Khalid, A.M.; Cossu, G.; Corsini, R.; Choudhury, P.; Ciaramella, E. 1-Gb/s Transmission over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation. IEEE Photonics J. 2012, 4, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Watson, S.; McKendry, J.J.; Massoubre, D.; Cogman, A.; Gu, E.; Henderson, R.K.; Kelly, A.E.; Dawson, M.D. 1.5 Gbit/s Multi-Channel Visible Light Communications Using CMOS-Controlled GaN-Based LEDs. J. Lightwave Technol. 2013, 31, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Tsonev, D.; Chun, H.; Rajbhandari, S.; McKendry, J.J.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A.E.; Faulkner, G. A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED. IEEE Photonics Technol. Lett. 2014, 26, 637–640. [Google Scholar] [CrossRef]
- Huang, X.; Chen, S.; Wang, Z.; Shi, J.; Wang, Y.; Xiao, J.; Chi, N. 2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Rajbhandari, S.; McKendry, J.J.; Herrnsdorf, J.; Chun, H.; Faulkner, G.; Haas, H.; Watson, I.M.; O’Brien, D.; Dawson, M.D. A Review of Gallium Nitride LEDs for Multi-Gigabit-per-Second Visible Light Data Communications. Semicond. Sci. Technol. 2017, 32, 023001. [Google Scholar] [CrossRef]
- Titkov, I.E.; Karpov, S.Y.; Yadav, A.; Zerova, V.L.; Zulonas, M.; Galler, B.; Strassburg, M.; Pietzonka, I.; Lugauer, H.-J.; Rafailov, E.U. Temperature-Dependent Internal Quantum Efficiency of Blue High-Brightness Light-Emitting Diodes. IEEE J. Quantum Electron. 2014, 50, 911–920. [Google Scholar] [CrossRef] [Green Version]
- Nippert, F.; Karpov, S.Y.; Callsen, G.; Galler, B.; Kure, T.; Nenstiel, C.; Wagner, M.R.; Straßburg, M.; Lugauer, H.-J.; Hoffmann, A. Temperature-Dependent Recombination Coefficients in InGaN Light-Emitting Diodes: Hole Localization, Auger Processes, and the Green Gap. Appl. Phys. Lett. 2016, 109, 161103. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Yan, D.; Zhang, Z.; Hua, B.; Yang, G.; Cao, Y.; Zhang, E.X.; Gu, X.; Fleetwood, D.M. Temperature-Dependent Efficiency Droop in GaN-Based Blue LEDs. IEEE Electron Device Lett. 2018, 39, 528–531. [Google Scholar] [CrossRef]
- Kim, M.-H.; Schubert, M.F.; Dai, Q.; Kim, J.K.; Schubert, E.F.; Piprek, J.; Park, Y. Origin of Efficiency Droop in GaN-Based Light-Emitting Diodes. Appl. Phys. Lett. 2007, 91, 183507. [Google Scholar] [CrossRef] [Green Version]
- Efremov, A.A.; Bochkareva, N.I.; Gorbunov, R.I.; Lavrinovich, D.A.; Rebane, Y.T.; Tarkhin, D.V.; Shreter, Y.G. Effect of the Joule Heating on the Quantum Efficiency and Choice of Thermal Conditions for High-Power Blue InGaN/GaN LEDs. Semiconductors 2006, 40, 605–610. [Google Scholar] [CrossRef]
- Guo, Q.; Li, D.; Hua, Q.; Ji, K.; Sun, W.; Hu, W.; Wang, Z.L. Enhanced Heat Dissipation in Gallium Nitride-Based Light-Emitting Diodes by Piezo-Phototronic Effect. Nano Lett. 2021, 21, 4062–4070. [Google Scholar] [CrossRef]
- Meneghesso, G.; Levada, S.; Pierobon, R.; Rampazzo, F.; Zanoni, E.; Cavallini, A.; Castaldini, A.; Scamarcio, G.; Du, S.; Eliashevich, I. Degradation Mechanisms of GaN-Based LEDs after Accelerated DC Current Aging. In Proceedings of the Digest International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 103–106. [Google Scholar]
- Bychikhin, S.; Pogany, D.; Vandamme, L.K.J.; Meneghesso, G.; Zanoni, E. Low-Frequency Noise Sources in as-Prepared and Aged GaN-Based Light-Emitting Diodes. J. Appl. Phys. 2005, 97, 123714. [Google Scholar] [CrossRef] [Green Version]
- Seager, C.H.; Myers, S.M.; Wright, A.F.; Koleske, D.D.; Allerman, A.A. Drift, Diffusion, and Trapping of Hydrogen in p-Type GaN. J. Appl. Phys. 2002, 92, 7246–7252. [Google Scholar] [CrossRef]
- Meneghini, M.; Trevisanello, L.-R.; Zehnder, U.; Zahner, T.; Strauss, U.; Meneghesso, G.; Zanoni, E. High-Temperature Degradation of GaN LEDs Related to Passivation. IEEE Trans. Electron Devices 2006, 53, 2981–2987. [Google Scholar] [CrossRef]
- Wan, Z.M.; Liu, J.; Su, K.L.; Hu, X.H. Flow and Heat Transfer in Porous Micro Heat Sink for Thermal Management of High Power LEDs. Microelectron. J. 2011, 42, 632–637. [Google Scholar] [CrossRef]
- Horng, R.-H.; Hong, J.-S.; Tsai, Y.-L.; Wuu, D.-S.; Chen, C.-M.; Chen, C.-J. Optimized Thermal Management from a Chip to a Heat Sink for High-Power GaN-Based Light-Emitting Diodes. IEEE Trans. Electron Devices 2010, 57, 2203–2207. [Google Scholar] [CrossRef]
- An, C.-C.; Wu, M.-H.; Huang, Y.-W.; Chen, T.-H.; Chao, C.-H.; Yeh, W.-Y. Study on Flip Chip Assembly of High Density Micro-LED Array. In Proceedings of the 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 19–21 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 336–338. [Google Scholar]
- Lai, Y.; Cordero, N.; Barthel, F.; Tebbe, F.; Kuhn, J.; Apfelbeck, R.; Würtenberger, D. Liquid Cooling of Bright LEDs for Automotive Applications. Appl. Therm. Eng. 2009, 29, 1239–1244. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Liu, J. A Liquid Metal Cooling System for the Thermal Management of High Power LEDs. Int. Commun. Heat Mass Transf. 2010, 37, 788–791. [Google Scholar] [CrossRef]
- Li, J.; Ma, B.; Wang, R.; Han, L. Study on a Cooling System Based on Thermoelectric Cooler for Thermal Management of High-Power LEDs. Microelectron. Reliab. 2011, 51, 2210–2215. [Google Scholar] [CrossRef]
- Meyaard, D.S.; Cho, J.; Fred Schubert, E.; Han, S.-H.; Kim, M.-H.; Sone, C. Analysis of the Temperature Dependence of the Forward Voltage Characteristics of GaInN Light-Emitting Diodes. Appl. Phys. Lett. 2013, 103, 121103. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Chen, J.R.; Chiu, C.H.; Kuo, H.-C.; Li, Y.-L.; Lu, T.-C.; Wang, S.C. Temperature-Dependent Electroluminescence Efficiency in Blue InGaN–GaN Light-Emitting Diodes with Different Well Widths. IEEE Photonics Technol. Lett. 2010, 22, 236–238. [Google Scholar] [CrossRef]
- Han, D.-P.; Kang, M.-G.; Oh, C.-H.; Kim, H.; Kim, K.-S.; Shin, D.-S.; Shim, J.-I. Investigation of Carrier Spill-over in In G a N-Based Light-Emitting Diodes by Temperature Dependences of Resonant Photoluminescence and Open-Circuit Voltage. Physica Status Solidi (A) 2013, 210, 2204–2208. [Google Scholar] [CrossRef]
- Grzanka, S.; Franssen, G.; Targowski, G.; Krowicki, K.; Suski, T.; Czernecki, R.; Perlin, P.; Leszczyński, M. Role of the Electron Blocking Layer in the Low-Temperature Collapse of Electroluminescence in Nitride Light-Emitting Diodes. Appl. Phys. Lett. 2007, 90, 103507. [Google Scholar] [CrossRef]
- Hori, A.; Yasunaga, D.; Satake, A.; Fujiwara, K. Temperature Dependence of Electroluminescence Intensity of Green and Blue InGaN Single-Quantum-Well Light-Emitting Diodes. Appl. Phys. Lett. 2001, 79, 3723–3725. [Google Scholar] [CrossRef]
- Islam, S.M.; Protasenko, V.; Rouvimov, S.; Verma, J.; Xing, H.; Jena, D. Deep-UV LEDs Using Polarization-Induced Doping: Electroluminescence at Cryogenic Temperatures. In Proceedings of the 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 67–68. [Google Scholar]
- Chlipala, M.; Turski, H.; Siekacz, M.; Pieniak, K.; Nowakowski-Szkudlarek, K.; Suski, T.; Skierbiszewski, C. Nitride Light-Emitting Diodes for Cryogenic Temperatures. Opt. Express 2020, 28, 30299–30308. [Google Scholar] [CrossRef] [PubMed]
- Dingle, R.; Shaklee, K.L.; Leheny, R.F.; Zetterstrom, R.B. Stimulated Emission and Laser Action in Gallium Nitride. Appl. Phys. Lett. 1971, 19, 5–7. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y. InGaN-Based Multi-Quantum-Well-Structure Laser Diodes. Jpn. J. Appl. Phys. 1996, 35, L74. [Google Scholar] [CrossRef]
- Stocker, D.A.; Schubert, E.F.; Grieshaber, W.; Boutros, K.S.; Redwing, J.M. Facet Roughness Analysis for InGaN/GaN Lasers with Cleaved Facets. Appl. Phys. Lett. 1998, 73, 1925–1927. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.K.H.; Sugimoto, Y.S.Y. InGaN Multi-Quantum-Well-Structure Laser Diodes with Cleaved Mirror Cavity Facets. Jpn. J. Appl. Phys. 1996, 35, L217. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Sugimoto, Y.S.Y.; Kiyoku, H.K.H. High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes. Jpn. J. Appl. Phys. 1997, 36, L1059. [Google Scholar] [CrossRef]
- Nishinaga, T.; Nakano, T.; Zhang, S. Epitaxial Lateral Overgrowth of GaAs by LPE. Jpn. J. Appl. Phys. 1988, 27, L964. [Google Scholar] [CrossRef]
- Usui, A.; Sunakawa, H.; Sakai, A.; Yamaguchi, A.A. Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy. Jpn. J. Appl. Phys. 1997, 36, L899. [Google Scholar] [CrossRef] [Green Version]
- Nam, O.-H.; Bremser, M.D.; Zheleva, T.S.; Davis, R.F. Lateral Epitaxy of Low Defect Density GaN Layers via Organometallic Vapor Phase Epitaxy. Appl. Phys. Lett. 1997, 71, 2638–2640. [Google Scholar] [CrossRef] [Green Version]
- Marchand, H.; Wu, X.H.; Ibbetson, J.P.; Fini, P.T.; Kozodoy, P.; Keller, S.; Speck, J.S.; DenBaars, S.P.; Mishra, U.K. Microstructure of GaN Laterally Overgrown by Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett. 1998, 73, 747–749. [Google Scholar] [CrossRef]
- Miyajima, T.; Tojyo, T.; Asano, T.; Yanashima, K.; Kijima, S.; Hino, T.; Takeya, M.; Uchida, S.; Tomiya, S.; Funato, K.; et al. GaN-Based Blue Laser Diodes. J. Phys. Condens. Matter 2001, 13, 7099–7114. [Google Scholar] [CrossRef]
- Kozaki, T.; Yanamoto, T.; Miyoshi, T.; Fujimura, Y.; Nagahama, S.-I.; Mukai, T. 52.3: High-Power InGaN Blue-Laser Diodes for Displays. In SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2005; Volume 36, pp. 1605–1607. [Google Scholar]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H. InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices. Jpn. J. Appl. Phys. 1997, 36, L1568. [Google Scholar] [CrossRef]
- Nakamura, S. InGaN Multiquantum-Well-Structure Laser Diodes with GaN-AlGaN Modulation-Doped Strained-Layer Superlattices. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 483–489. [Google Scholar] [CrossRef]
- Miyoshi, T.; Kozaki, T.; Yanamoto, T.; Fujimura, Y.; Nagahama, S.; Mukai, T. GaN-Based High-Output-Power Blue Laser Diodes for Display Applications. J. Soc. Inf. Disp. 2007, 15, 157–160. [Google Scholar] [CrossRef]
- Michiue, A.; Miyoshi, T.; Kozaki, T.; Yanamoto, T.; Nagahama, S.; Mukai, T. High-Power Pure Blue Ingan Laser Diodes. IEICE Trans. Electron. 2009, 92, 194–197. [Google Scholar] [CrossRef] [Green Version]
- Murayama, M.; Nakayama, Y.; Yamazaki, K.; Hoshina, Y.; Watanabe, H.; Fuutagawa, N.; Kawanishi, H.; Uemura, T.; Narui, H. Watt-Class Green (530 Nm) and Blue (465 Nm) Laser Diodes. Physica Status Solidi (A) 2018, 215, 1700513. [Google Scholar] [CrossRef]
- Masui, S.; Nakatsu, Y.; Kasahara, D.; Nagahama, S. Recent Improvement in Nitride Lasers. In Gallium Nitride Materials and Devices XII; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10104, p. 101041H. [Google Scholar]
- Nakatsu, Y.; Nagao, Y.; Kozuru, K.; Hirao, T.; Okahisa, E.; Masui, S.; Yanamoto, T.; Nagahama, S. High-Efficiency Blue and Green Laser Diodes for Laser Displays. In Gallium Nitride Materials and Devices XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10918, p. 109181D. [Google Scholar]
- Wierer, J.J., Jr.; Tsao, J.Y.; Sizov, D.S. Comparison between Blue Lasers and Light-Emitting Diodes for Future Solid-State Lighting. Laser Photonics Rev. 2013, 7, 963–993. [Google Scholar] [CrossRef]
- Muziol, G.; Siekacz, M.; Nowakowski-Szkudlarek, K.; Hajdel, M.; Smalc-Koziorowska, J.; Feduniewicz-Żmuda, A.; Grzanka, E.; Wolny, P.; Turski, H.; Wiśniewski, P. Extremely Long Lifetime of III-Nitride Laser Diodes Grown by Plasma Assisted Molecular Beam Epitaxy. Mater. Sci. Semicond. Process. 2019, 91, 387–391. [Google Scholar] [CrossRef]
- Ohta, H.; DenBaars, S.P.; Nakamura, S. Future of Group-III Nitride Semiconductor Green Laser Diodes. J. Opt. Soc. Am. B JOSAB 2010, 27, B45–B49. [Google Scholar] [CrossRef]
- Nakamura, T. Recent Progress of Green Laser Diodes. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim, Kyoto, Japan, 30 June–4 July 2013; Optical Society of America: Washington, DC, USA, 2013. [Google Scholar]
- Hardy, M.T.; Feezell, D.F.; DenBaars, S.P.; Nakamura, S. Group III-Nitride Lasers: A Materials Perspective. Mater. Today 2011, 14, 408–415. [Google Scholar] [CrossRef]
- Kneissl, M.; Knorr, A.; Reitzenstein, S.; Hoffmann, A. Semiconductor Nanophotonics: Materials, Models, and Devices; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 194. [Google Scholar]
- Bergmann, M.J.; Casey, H.C., Jr. Optical-Field Calculations for Lossy Multiple-Layer Al x Ga 1- x N/In x Ga 1- x N Laser Diodes. J. Appl. Phys. 1998, 84, 1196–1203. [Google Scholar] [CrossRef]
- Lermer, T.; Schillgalies, M.; Breidenassel, A.; Queren, D.; Eichler, C.; Avramescu, A.; Mueller, J.; Scheibenzuber, W.; Schwarz, U.; Lutgen, S. Waveguide Design of Green InGaN Laser Diodes. Physica Status Solidi (A) 2010, 207, 1328–1331. [Google Scholar] [CrossRef]
- Miyoshi, T.; Masui, S.; Okada, T.; Yanamoto, T.; Kozaki, T.; Nagahama, S.; Mukai, T. 510–515 Nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate. Appl. Phys. Express 2009, 2, 062201. [Google Scholar] [CrossRef]
- Lutgen, S.; Avramescu, A.; Lermer, T.; Queren, D.; Müller, J.; Bruederl, G.; Strauss, U. True Green InGaN Laser Diodes. Physica Status Solidi (A) 2010, 207, 1318–1322. [Google Scholar] [CrossRef]
- Avramescu, A.; Lermer, T.; Müller, J.; Eichler, C.; Bruederl, G.; Sabathil, M.; Lutgen, S.; Strauss, U. True Green Laser Diodes at 524 Nm with 50 MW Continuous Wave Output Power on C-Plane GaN. Appl. Phys. Express 2010, 3, 061003. [Google Scholar] [CrossRef]
- Avramescu, A.; Hager, T.; Bernhard, S.; Brüderl, G.; Wurm, T.; Somers, A.; Eichler, C.; Vierheilig, C.; Löffler, A.; Ristic, J. High Power Blue and Green Laser Diodes and Their Applications. In Proceedings of the IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 457–458. [Google Scholar]
- Nakatsu, Y.; Nagao, Y.; Hirao, T.; Hara, Y.; Masui, S.; Yanamoto, T.; Nagahama, S. Blue and Green InGaN Semiconductor Lasers as Light Sources for Displays. In Gallium Nitride Materials and Devices XV; International Society for Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11280, p. 112800S. [Google Scholar]
- Hasan, S.M.N.; You, W.; Sumon, M.S.I.; Arafin, S. Recent Progress of Electrically Pumped AlGaN Diode Lasers in the UV-B and -C Bands. Photonics 2021, 8, 267. [Google Scholar] [CrossRef]
- Nagahama, S.; Yanamoto, T.; Sano, M.; Mukai, T. Ultraviolet GaN Single Quantum Well Laser Diodes. Jpn. J. Appl. Phys. 2001, 40, L785. [Google Scholar] [CrossRef]
- Nagahama, S.; Yanamoto, T.; Sano, M.; Mukai, T. Study of GaN-Based Laser Diodes in Near Ultraviolet Region. Jpn. J. Appl. Phys. 2002, 41, 5. [Google Scholar] [CrossRef]
- Kneissl, M.; Treat, D.W.; Teepe, M.; Miyashita, N.; Johnson, N.M. Continuous-Wave Operation of Ultraviolet InGaN/InAlGaN Multiple-Quantum-Well Laser Diodes. Appl. Phys. Lett. 2003, 82, 2386–2388. [Google Scholar] [CrossRef]
- Kneissl, M.; Treat, D.W.; Teepe, M.; Miyashita, N.; Johnson, N.M. Ultraviolet InAlGaN Multiple-Quantum-Well Laser Diodes. Physica Status Solidi (A) 2003, 200, 118–121. [Google Scholar] [CrossRef]
- Kneissl, M.; Treat, D.W.; Teepe, M.; Miyashita, N.; Johnson, N.M. Ultraviolet AlGaN Multiple-Quantum-Well Laser Diodes. Appl. Phys. Lett. 2003, 82, 4441–4443. [Google Scholar] [CrossRef]
- Edmond, J.; Abare, A.; Bergman, M.; Bharathan, J.; Bunker, K.L.; Emerson, D.; Haberern, K.; Ibbetson, J.; Leung, M.; Russel, P. High Efficiency GaN-Based LEDs and Lasers on SiC. J. Cryst. Growth 2004, 272, 242–250. [Google Scholar] [CrossRef]
- Yoshida, H.; Yamashita, Y.; Kuwabara, M.; Kan, H. A 342-Nm Ultraviolet AlGaN Multiple-Quantum-Well Laser Diode. Nat. Photonics 2008, 2, 551–554. [Google Scholar] [CrossRef]
- Yoshida, H.; Yamashita, Y.; Kuwabara, M.; Kan, H. Demonstration of an Ultraviolet 336 Nm AlGaN Multiple-Quantum-Well Laser Diode. Appl. Phys. Lett. 2008, 93, 241106. [Google Scholar] [CrossRef]
- Aoki, Y.; Kuwabara, M.; Yamashita, Y.; Takagi, Y.; Sugiyama, A.; Yoshida, H. A 350-Nm-Band GaN/AlGaN Multiple-Quantum-Well Laser Diode on Bulk GaN. Appl. Phys. Lett. 2015, 107, 151103. [Google Scholar] [CrossRef]
- Crawford, M.H.; Allerman, A.A.; Armstrong, A.M.; Smith, M.L.; Cross, K.C. Laser Diodes with 353 Nm Wavelength Enabled by Reduced-Dislocation-Density AlGaN Templates. Appl. Phys. Express 2015, 8, 112702. [Google Scholar] [CrossRef]
- Taketomi, H.; Aoki, Y.; Takagi, Y.; Sugiyama, A.; Kuwabara, M.; Yoshida, H. Over 1 W Record-Peak-Power Operation of a 338 Nm AlGaN Multiple-Quantum-Well Laser Diode on a GaN Substrate. Jpn. J. Appl. Phys. 2016, 55, 05FJ05. [Google Scholar] [CrossRef]
- Nagahama, S.; Yanamoto, T.; Sano, M.; Mukai, T. Characteristics of Ultraviolet Laser Diodes Composed of Quaternary AlxInyGa(1-x-y)N. Jpn. J. Appl. Phys. 2001, 40, L788. [Google Scholar] [CrossRef]
- Zhang, Z.; Kushimoto, M.; Sakai, T.; Sugiyama, N.; Schowalter, L.J.; Sasaoka, C.; Amano, H. A 271.8 Nm Deep-Ultraviolet Laser Diode for Room Temperature Operation. Appl. Phys. Express 2019, 12, 124003. [Google Scholar] [CrossRef]
- Sato, K.; Yasue, S.; Yamada, K.; Tanaka, S.; Omori, T.; Ishizuka, S.; Teramura, S.; Ogino, Y.; Iwayama, S.; Miyake, H. Room-Temperature Operation of AlGaN Ultraviolet-B Laser Diode at 298 Nm on Lattice-Relaxed Al0. 6Ga0. 4N/AlN/Sapphire. Appl. Phys. Express 2020, 13, 031004. [Google Scholar] [CrossRef] [Green Version]
- Omori, T.; Ishizuka, S.; Tanaka, S.; Yasue, S.; Sato, K.; Ogino, Y.; Teramura, S.; Yamada, K.; Iwayama, S.; Miyake, H. Internal Loss of AlGaN-Based Ultraviolet-B Band Laser Diodes with p-Type AlGaN Cladding Layer Using Polarization Doping. Appl. Phys. Express 2020, 13, 071008. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, X.; Wu, Y.; Mi, Z. An Electrically Pumped 239 Nm AlGaN Nanowire Laser Operating at Room Temperature. Appl. Phys. Lett. 2016, 109, 191106. [Google Scholar] [CrossRef]
- Higuchi, Y.; Omae, K.; Matsumura, H.; Mukai, T. Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection. Appl. Phys. Express 2008, 1, 121102. [Google Scholar] [CrossRef]
- Lu, T.-C.; Kao, C.-C.; Kuo, H.-C.; Huang, G.-S.; Wang, S.-C. CW Lasing of Current Injection Blue GaN-Based Vertical Cavity Surface Emitting Laser. Appl. Phys. Lett. 2008, 92, 141102. [Google Scholar] [CrossRef]
- Xu, R.; Mei, Y.; Xu, H.; Yang, T.; Ying, L.; Zheng, Z.; Long, H.; Zhang, B.; Liu, J. Effects of Lateral Optical Confinement In GaN VCSELs With Double Dielectric DBRs. IEEE Photonics J. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Kuramoto, M.; Kobayashi, S.; Akagi, T.; Tazawa, K.; Tanaka, K.; Nakata, K.; Saito, T. Watt-Class Blue Vertical-Cavity Surface-Emitting Laser Arrays. Appl. Phys. Express 2019, 12, 091004. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, T.; Tanaka, M.; Mitomo, J.; Nakajima, H.; Ito, M.; Ohara, M.; Kobayashi, N.; Fujii, K.; Watanabe, H.; Satou, S. Lateral Optical Confinement of GaN-Based VCSEL Using an Atomically Smooth Monolithic Curved Mirror. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonkee, B.P.; Young, E.C.; Lee, C.; Leonard, J.T.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Demonstration of a III-Nitride Edge-Emitting Laser Diode Utilizing a GaN Tunnel Junction Contact. Opt. Express 2016, 24, 7816–7822. [Google Scholar] [CrossRef]
- Leonard, J.T.; Young, E.C.; Yonkee, B.P.; Cohen, D.A.; Margalith, T.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Demonstration of a III-Nitride Vertical-Cavity Surface-Emitting Laser with a III-Nitride Tunnel Junction Intracavity Contact. Appl. Phys. Lett. 2015, 107, 091105. [Google Scholar] [CrossRef]
- Forman, C.A.; Lee, S.; Young, E.C.; Kearns, J.A.; Cohen, D.A.; Leonard, J.T.; Margalith, T.; DenBaars, S.P.; Nakamura, S. Continuous-Wave Operation of m-Plane GaN-Based Vertical-Cavity Surface-Emitting Lasers with a Tunnel Junction Intracavity Contact. Appl. Phys. Lett. 2018, 112, 111106. [Google Scholar] [CrossRef]
- Lee, S.; Forman, C.A.; Lee, C.; Kearns, J.; Young, E.C.; Leonard, J.T.; Cohen, D.A.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. GaN-Based Vertical-Cavity Surface-Emitting Lasers with Tunnel Junction Contacts Grown by Metal-Organic Chemical Vapor Deposition. Appl. Phys. Express 2018, 11, 062703. [Google Scholar] [CrossRef]
- Mehta, K.; Liu, Y.-S.; Wang, J.; Jeong, H.; Detchprohm, T.; Park, Y.J.; Alugubelli, S.R.; Wang, S.; Ponce, F.A.; Shen, S.-C. Lateral Current Spreading in III-N Ultraviolet Vertical-Cavity Surface-Emitting Lasers Using Modulation-Doped Short Period Superlattices. IEEE J. Quantum Electron. 2018, 54, 1–7. [Google Scholar] [CrossRef]
- Hashemi, E.; Gustavsson, J.; Bengtsson, J.; Stattin, M.; Cosendey, G.; Grandjean, N.; Haglund, Å. Engineering the Lateral Optical Guiding in Gallium Nitride-Based Vertical-Cavity Surface-Emitting Laser Cavities to Reach the Lowest Threshold Gain. Jpn. J. Appl. Phys. 2013, 52, 08JG04. [Google Scholar] [CrossRef]
- Leonard, J.T.; Cohen, D.A.; Yonkee, B.P.; Farrell, R.M.; Margalith, T.; Lee, S.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Nonpolar III-Nitride Vertical-Cavity Surface-Emitting Lasers Incorporating an Ion Implanted Aperture. Appl. Phys. Lett. 2015, 107, 011102. [Google Scholar] [CrossRef]
- Leonard, J.T.; Yonkee, B.P.; Cohen, D.A.; Megalini, L.; Lee, S.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Nonpolar III-Nitride Vertical-Cavity Surface-Emitting Laser with a Photoelectrochemically Etched Air-Gap Aperture. Appl. Phys. Lett. 2016, 108, 031111. [Google Scholar] [CrossRef]
- Kuramoto, M.; Kobayashi, S.; Akagi, T.; Tazawa, K.; Tanaka, K.; Saito, T.; Takeuchi, T. Enhancement of Slope Efficiency and Output Power in GaN-Based Vertical-Cavity Surface-Emitting Lasers with a SiO2-Buried Lateral Index Guide. Appl. Phys. Lett. 2018, 112, 111104. [Google Scholar] [CrossRef]
- Imamog, A.; Ram, R.J.; Pau, S.; Yamamoto, Y. Nonequilibrium Condensates and Lasers without Inversion: Exciton-Polariton Lasers. Phys. Rev. A 1996, 53, 4250. [Google Scholar] [CrossRef] [PubMed]
- Malpuech, G.; Kavokin, A.; Di Carlo, A.; Baumberg, J.J. Polariton Lasing by Exciton-Electron Scattering in Semiconductor Microcavities. Phys. Rev. B 2002, 65, 153310. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Haug, H.; Yamamoto, Y. Exciton-Polariton Bose-Einstein Condensation. Rev. Mod. Phys. 2010, 82, 1489. [Google Scholar] [CrossRef] [Green Version]
- Liew, T.C.H.; Kavokin, A.V.; Ostatnickỳ, T.; Kaliteevski, M.; Shelykh, I.A.; Abram, R.A. Exciton-Polariton Integrated Circuits. Phys. Rev. B 2010, 82, 033302. [Google Scholar] [CrossRef] [Green Version]
- Amo, A.; Liew, T.C.H.; Adrados, C.; Houdré, R.; Giacobino, E.; Kavokin, A.V.; Bramati, A. Exciton–Polariton Spin Switches. Nat. Photonics 2010, 4, 361–366. [Google Scholar] [CrossRef]
- Kavokin, A. Why Do We Need Polariton Lasers? SPIE Newsroom: Bellingham, WA, USA, 2012. [Google Scholar]
- Ballarini, D.; De Giorgi, M.; Cancellieri, E.; Houdré, R.; Giacobino, E.; Cingolani, R.; Bramati, A.; Gigli, G.; Sanvitto, D. All-Optical Polariton Transistor. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Schneider, C.; Rahimi-Iman, A.; Kim, N.Y.; Fischer, J.; Savenko, I.G.; Amthor, M.; Lermer, M.; Wolf, A.; Worschech, L.; Kulakovskii, V.D. An Electrically Pumped Polariton Laser. Nature 2013, 497, 348–352. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Xiao, B.; Das, A.; Bhowmick, S.; Heo, J. Solid State Electrically Injected Exciton-Polariton Laser. Phys. Rev. Lett. 2013, 110, 206403. [Google Scholar] [CrossRef]
- Zamfirescu, M.; Kavokin, A.; Gil, B.; Malpuech, G.; Kaliteevski, M. ZnO as a Material Mostly Adapted for the Realization of Room-Temperature Polariton Lasers. Phys. Rev. B 2002, 65, 161205. [Google Scholar] [CrossRef]
- Malpuech, G.; Di Carlo, A.; Kavokin, A.; Baumberg, J.J.; Zamfirescu, M.; Lugli, P. Room-Temperature Polariton Lasers Based on GaN Microcavities. Appl. Phys. Lett. 2002, 81, 412–414. [Google Scholar] [CrossRef] [Green Version]
- Christopoulos, S.; Von Högersthal, G.B.H.; Grundy, A.J.D.; Lagoudakis, P.G.; Kavokin, A.V.; Baumberg, J.J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J.-F. Room-Temperature Polariton Lasing in Semiconductor Microcavities. Phys. Rev. Lett. 2007, 98, 126405. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Frost, T.; Deshpande, S.; Baten, M.Z.; Hazari, A.; Das, A. Room Temperature Electrically Injected Polariton Laser. Phys. Rev. Lett. 2014, 112, 236802. [Google Scholar] [CrossRef] [PubMed]
- Baten, M.Z.; Frost, T.; Iorsh, I.; Deshpande, S.; Kavokin, A.; Bhattacharya, P. Small-Signal Modulation Characteristics of a Polariton Laser. Sci. Rep. 2015, 5, 11915. [Google Scholar] [CrossRef] [Green Version]
- Baten, M.Z.; Bhattacharya, A.; Frost, T.; Iorsh, I.; Kavokin, A.; Bhattacharya, P. The Role of Defects in Lowering the Effective Polariton Temperature in Electric and Optically Pumped Polariton Lasers. Appl. Phys. Lett. 2016, 108, 041102. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Baten, M.Z.; Iorsh, I.; Frost, T.; Kavokin, A.; Bhattacharya, P. Room-Temperature Spin Polariton Diode Laser. Phys. Rev. Lett. 2017, 119, 067701. [Google Scholar] [CrossRef]
- Ren, Q.; Gailitis, R.P.; Thompson, K.P.; Lin, J.T. Ablation of the Cornea and Synthetic Polymers Using a UV (213 Nm) Solid-State Laser. IEEE J. Quantum Electron. 1990, 26, 2284–2288. [Google Scholar] [CrossRef]
- Schadt, M.; Schmitt, K.; Kozinkov, V.; Chigrinov, V. Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers. Jpn. J. Appl. Phys. 1992, 31, 2155. [Google Scholar] [CrossRef]
- Hasegawa, M.; Taira, Y. Nematic Homogeneous Photo Alignment by Polyimide Exposure to Linearly Polarized UV. J. Photopolym. Sci. Technol. 1995, 8, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Kawatsuki, N.; Ono, H.; Takatsuka, H.; Yamamoto, T.; Sangen, O. Liquid Crystal Alignment on Photoreactive Side-Chain Liquid-Crystalline Polymer Generated by Linearly Polarized UV Light. Macromolecules 1997, 30, 6680–6682. [Google Scholar] [CrossRef]
- Chwirot, B.W.; Chwirot, S.; Jedrzejczyk, W.; Jackowski, M.; Raczyńska, A.M.; Winczakiewicz, J.; Dobber, J. Ultraviolet Laser-Induced Fluorescence of Human Stomach Tissues: Detection of Cancer Tissues by Imaging Techniques. Lasers Surg. Med. 1997, 21, 149–158. [Google Scholar] [CrossRef]
- Guillet, T. GaN Microlasers for Integrated Photonics: Waveguide Polariton Lasers and Microdisk Lasers. In Proceedings of the UV and Higher Energy Photonics: From Materials to Applications, San Diego, CA, USA, 1 August 2021; International Society for Optics and Photonics: Bellingham, WA, USA; Volume 11801, p. 118010B. [Google Scholar]
- Holub, M.; Shin, J.; Saha, D.; Bhattacharya, P. Electrical Spin Injection and Threshold Reduction in a Semiconductor Laser. Phys. Rev. Lett. 2007, 98, 146603. [Google Scholar] [CrossRef] [PubMed]
- Basu, D.; Saha, D.; Wu, C.C.; Holub, M.; Mi, Z.; Bhattacharya, P. Electrically Injected InAs/ GaAs Quantum Dot Spin Laser Operating at 200 K. Appl. Phys. Lett. 2008, 92, 091119. [Google Scholar] [CrossRef]
- Basu, D.; Saha, D.; Bhattacharya, P. Optical Polarization Modulation and Gain Anisotropy in an Electrically Injected Spin Laser. Phys. Rev. Lett. 2009, 102, 093904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-Y.; Wong, T.-M.; Chang, C.-W.; Dong, C.-Y.; Chen, Y.-F. Self-Polarized Spin-Nanolasers. Nat. Nanotechnol. 2014, 9, 845–850. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Baten, Z.; Frost, T.; Bhattacharya, P. Room Temperature GaN-Based Edge-Emitting Spin-Polarized Light Emitting Diode. IEEE Photonics Technol. Lett. 2017, 29, 338–341. [Google Scholar] [CrossRef]
- Buyanova, I.A.; Izadifard, M.; Chen, W.M.; Kim, J.; Ren, F.; Thaler, G.; Abernathy, C.R.; Pearton, S.J.; Pan, C.-C.; Chen, G.-T. Spin Injection and Spin Loss in GaMnN/InGaN Light-Emitting Diodes. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2005; Volume 772, pp. 1399–1400. [Google Scholar]
- Ham, M.-H.; Yoon, S.; Park, Y.; Bian, L.; Ramsteiner, M.; Myoung, J.-M. Electrical Spin Injection from Room-Temperature Ferromagnetic (Ga, Mn)N in Nitride-Based Spin-Polarized Light-Emitting Diodes. J. Phys. Condens. Matter. 2006, 18, 7703–7708. [Google Scholar] [CrossRef]
- Banerjee, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Ganguly, S.; Aldhaheri, R.W.; Hussain, M.A.; Balamesh, A.S.; Saha, D. Electrical Spin Injection Using GaCrN in a GaN Based Spin Light Emitting Diode. Appl. Phys. Lett. 2013, 103, 242408. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Ho, C.Y.; Lu, M.L.; Chu, L.J.; Chen, K.C.; Chu, S.W.; Chen, W.; Mou, C.Y.; Chen, Y.F. Efficient Spin-Light Emitting Diodes Based on InGaN/GaN Quantum Disks at Room Temperature: A New Self-Polarized Paradigm. Nano Lett. 2014, 14, 3130–3137. [Google Scholar] [CrossRef] [PubMed]
- Faria, P.E., Jr.; Xu, G.; Chen, Y.-F.; Sipahi, G.M.; Žutić, I. Wurtzite Spin Lasers. Phys. Rev. B 2017, 95, 115301. [Google Scholar] [CrossRef] [Green Version]
- Arafin, S.; Liu, X.; Mi, Z. Review of Recent Progress of III-Nitride Nanowire Lasers. J. Nanophotonics 2013, 7, 074599. [Google Scholar] [CrossRef]
- Zhao, C.; Alfaraj, N.; Subedi, R.C.; Liang, J.W.; Alatawi, A.A.; Alhamoud, A.A.; Ebaid, M.; Alias, M.S.; Ng, T.K.; Ooi, B.S. III-Nitride Nanowires on Unconventional Substrates: From Materials to Optoelectronic Device Applications. Prog. Quantum Electron. 2018, 61, 1–31. [Google Scholar] [CrossRef]
- Chen, F.; Ji, X.; Lau, S.P. Recent Progress in Group III-Nitride Nanostructures: From Materials to Applications. Mater. Sci. Eng. R Rep. 2020, 142, 100578. [Google Scholar] [CrossRef]
- Paul, D.J.; Mimi, A.A.; Hazari, A.; Bhattacharya, P.; Baten, M.Z. Finite-Difference Time-Domain Analysis of the Tunability of Anderson Localization of Light in Self-Organized GaN Nanowire Arrays. J. Appl. Phys. 2019, 125, 043104. [Google Scholar] [CrossRef]
- Feng, M.; Liu, J.; Sun, Q.; Yang, H. III-Nitride Semiconductor Lasers Grown on Si. Prog. Quantum Electron. 2021, 77, 100323. [Google Scholar] [CrossRef]
- Hazari, A.; Hsiao, F.C.; Yan, L.; Heo, J.; Millunchick, J.M.; Dallesasse, J.M.; Bhattacharya, P. 1.3 μ m Optical Interconnect on Silicon: A Monolithic III-Nitride Nanowire Photonic Integrated Circuit. IEEE J. Quantum Electron. 2017, 53, 1–9. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Hazari, A.; Jahangir, S.; Guo, W.; Frost, T. III-nitride electrically pumped visible and near-infrared nanowire lasers on (001) silicon. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2017; Volume 96, pp. 385–409. [Google Scholar]
- Johnson, J.C.; Choi, H.-J.; Knutsen, K.P.; Schaller, R.D.; Yang, P.; Saykally, R.J. Single Gallium Nitride Nanowire Lasers. Nat. Mater. 2002, 1, 106–110. [Google Scholar] [CrossRef]
- Gradečak, S.; Qian, F.; Li, Y.; Park, H.-G.; Lieber, C.M. GaN Nanowire Lasers with Low Lasing Thresholds. Appl. Phys. Lett. 2005, 87, 173111. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-Y.; Kuo, C.-T.; Wang, C.-Y.; He, C.-L.; Lin, M.-H.; Ahn, H.; Gwo, S. Plasmonic Green Nanolaser Based on a Metal–Oxide–Semiconductor Structure. Nano Lett. 2011, 11, 4256–4260. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-J.; Kim, J.; Chen, H.-Y.; Wu, C.; Dabidian, N.; Sanders, C.E.; Wang, C.-Y.; Lu, M.-Y.; Li, B.-H.; Qiu, X.; et al. Plasmonic Nanolaser Using Epitaxially Grown Silver Film. Science 2012, 337, 450–453. [Google Scholar] [CrossRef]
- Heo, J.; Guo, W.; Bhattacharya, P. Monolithic Single GaN Nanowire Laser with Photonic Crystal Microcavity on Silicon. Appl. Phys. Lett. 2011, 98, 021110. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-G.; Qian, F.; Barrelet, C.J.; Li, Y. Microstadium Single-Nanowire Laser. Appl. Phys. Lett. 2007, 91, 251115. [Google Scholar] [CrossRef]
- Pauzauskie, P.J.; Sirbuly, D.J.; Yang, P. Semiconductor Nanowire Ring Resonator Laser. Phys. Rev. Lett. 2006, 96, 143903. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-R.; Lin, Y.-Y.; Huang, H.-H.; Singh, J. Electronic and Optical Properties of InGaN Quantum Dot Based Light Emitters for Solid State Lighting. J. Appl. Phys. 2009, 105, 013117. [Google Scholar] [CrossRef] [Green Version]
- Schulz, S.; O’Reilly, E.P. Theory of Reduced Built-in Polarization Field in Nitride-Based Quantum Dots. Phys. Rev. B 2010, 82, 033411. [Google Scholar] [CrossRef]
- Frost, T.; Hazari, A.; Aiello, A.; Baten, M.Z.; Yan, L.; Mirecki-Millunchick, J.; Bhattacharya, P. High Performance Red-Emitting Multiple Layer InGaN/GaN Quantum Dot Lasers. Jpn. J. Appl. Phys. 2016, 55, 032101. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Chen, C.-J.; Chen, K.-C.; Hao, Z.; Luo, Y.; Sun, C.; Wu, M.-C.; Yu, J.; Han, Y.; et al. Green InGaN Quantum Dots Breaking through Efficiency and Bandwidth Bottlenecks of Micro-LEDs. Laser Photonics Rev. 2021, 15, 2000406. [Google Scholar] [CrossRef]
- Deshpande, S.; Heo, J.; Das, A.; Bhattacharya, P. Electrically Driven Polarized Single-Photon Emission from an InGaN Quantum Dot in a GaN Nanowire. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pakdel, A.; Bando, Y.; Golberg, D. Nano Boron Nitride Flatland. Chem. Soc. Rev. 2014, 43, 934–959. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal Boron Nitride Is an Indirect Bandgap Semiconductor. Nat. Photonics 2016, 10, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Wickramaratne, D.; Weston, L.; Van de Walle, C.G. Monolayer to Bulk Properties of Hexagonal Boron Nitride. J. Phys. Chem. C 2018, 122, 25524–25529. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Tran, T.T.; Elbadawi, C.; Totonjian, D.; Lobo, C.J.; Grosso, G.; Moon, H.; Englund, D.R.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331–7338. [Google Scholar] [CrossRef]
- Museur, L.; Feldbach, E.; Kanaev, A. Defect-Related Photoluminescence of Hexagonal Boron Nitride. Phys. Rev. B 2008, 78, 155204. [Google Scholar] [CrossRef] [Green Version]
- Laleyan, D.A.; Zhao, S.; Woo, S.Y.; Tran, H.N.; Le, H.B.; Szkopek, T.; Guo, H.; Botton, G.A.; Mi, Z. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics. Nano Lett. 2017, 17, 3738–3743. [Google Scholar] [CrossRef]
- Bourrellier, R.; Meuret, S.; Tararan, A.; Stéphan, O.; Kociak, M.; Tizei, L.H.; Zobelli, A. Bright UV Single Photon Emission at Point Defects in H-BN. Nano Lett. 2016, 16, 4317–4321. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Moon, H.; Lienhard, B.; Ali, S.; Efetov, D.K.; Furchi, M.M.; Jarillo-Herrero, P.; Ford, M.J.; Aharonovich, I.; Englund, D. Tunable and High-Purity Room Temperature Single-Photon Emission from Atomic Defects in Hexagonal Boron Nitride. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum Emission from Hexagonal Boron Nitride Monolayers. Nat. Nanotechnol. 2016, 11, 37–41. [Google Scholar] [CrossRef]
- Martínez, L.J.; Pelini, T.; Waselowski, V.; Maze, J.R.; Gil, B.; Cassabois, G.; Jacques, V. Efficient Single Photon Emission from a High-Purity Hexagonal Boron Nitride Crystal. Phys. Rev. B 2016, 94, 121405. [Google Scholar] [CrossRef] [Green Version]
- Exarhos, A.L.; Hopper, D.A.; Grote, R.R.; Alkauskas, A.; Bassett, L.C. Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride. ACS Nano 2017, 11, 3328–3336. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baten, M.Z.; Alam, S.; Sikder, B.; Aziz, A. III-Nitride Light-Emitting Devices. Photonics 2021, 8, 430. https://doi.org/10.3390/photonics8100430
Baten MZ, Alam S, Sikder B, Aziz A. III-Nitride Light-Emitting Devices. Photonics. 2021; 8(10):430. https://doi.org/10.3390/photonics8100430
Chicago/Turabian StyleBaten, Md Zunaid, Shamiul Alam, Bejoy Sikder, and Ahmedullah Aziz. 2021. "III-Nitride Light-Emitting Devices" Photonics 8, no. 10: 430. https://doi.org/10.3390/photonics8100430
APA StyleBaten, M. Z., Alam, S., Sikder, B., & Aziz, A. (2021). III-Nitride Light-Emitting Devices. Photonics, 8(10), 430. https://doi.org/10.3390/photonics8100430