Optical Trapping, Sensing, and Imaging by Photonic Nanojets
Abstract
:1. Introduction
2. Types and Principles of Microsphere Superlenses
2.1. Types of Microspheres
2.2. Principles of Photonic Nanojets for Optical Trapping, Sensing and Imaging
3. Optical Trapping and Sensing Using Photonic Nanojets
3.1. Fluorescence Signal Enhancement of Trapped Nano-Objects
3.2. Backscattering Signal Enhancement of Trapped Nano-Objects
3.3. Raman Signal Enhancement by Microsphere Superlens
4. Super-Resolution Imaging by Photonic Nanojets
4.1. Optical Imaging of Nanostructures with Movable Microspheres
4.2. Super-Resolution Imaging of Living Cells by Photonic Nanojets
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, M.; Bao, H.; Gan, X.; Stokes, N.; Wu, J. Tweezing and manipulating micro-and nanoparticles by optical nonlinear endoscopy. Light Sci. Appl. 2014, 3, e126. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.; Xiang, Y.; Lamstein, J.; Liang, Y.; Bezryadina, A.; Liang, G.; Hansson, T.; Wetzel, B.; Preece, D.; White, A.; et al. Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions. Light Sci. Appl. 2019, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Bezryadina, A.S.; Preece, D.C.; Chen, J.C.; Chen, Z. Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers. Light Sci. Appl. 2016, 5, e16158. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Nagar, H.; Roichman, Y.; Arie, A. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams. Light Sci. Appl. 2017, 6, e17050. [Google Scholar] [CrossRef] [PubMed]
- Lepage, D.; Jiménez, A.; Beauvais, J.; Dubowski, J.J. Real-time detection of influenza a virus using semiconductor nanophotonics. Light Sci. Appl. 2013, 2, e62. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kwon, O.; Jeon, M.; Song, J.; Shin, S.; Kim, H.; Jo, M.; Rim, T.; Dosh, J.; Kim, S.; et al. Super-resolution visible photoactivated atomic force microscopy. Light Sci. Appl. 2017, 6, e17080. [Google Scholar] [CrossRef] [Green Version]
- Lombardini, A.; Mytskaniuk, V.; Sivankutty, S.; Andresen, E.R.; Chen, X.; Wenger, J.; Fabert, M.; Joly, N.; Louradour, F.; Kudlinski, A.; et al. High-resolution multimodal flexible coherent Raman endoscope. Light Sci. Appl. 2018, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Petsch, S.; Schuhladen, S.; Dreesen, L.; Zappe, H. The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 2016, 5, e16068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zappe, H.; Seifert, A. Wafer-scale fabricated thermo-pneumatically tunable microlenses. Light Sci. Appl. 2014, 3, e145. [Google Scholar] [CrossRef]
- Kim, K.; Jang, K.W.; Ryu, J.K.; Jeong, K.H. Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging. Light Sci. Appl. 2020, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Xin, H.; Zhang, Y.; Li, B. Optical fiber technologies for nanomanipulation and biodetection: A review. J. Lightwave Technol. 2021, 39, 251–262. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, Y.; Li, X.; Li, B. Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber. Lab Chip 2011, 11, 2241–2246. [Google Scholar] [CrossRef]
- Pan, T.; Lu, D.; Xin, H.; Li, B. Biophotonic probes for bio-detection and imaging. Light Sci. Appl. 2021, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Goldberg, A.F.G.; Stoltz, B.M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl. 2016, 5, e16001. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.C.; Zhi, Y.; Tang, S.J.; Li, B.B.; Gong, Q.; Qiu, C.W.; Xiao, Y.F. Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light Sci. Appl. 2018, 7, 18003. [Google Scholar] [CrossRef] [PubMed]
- Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 1873, 9, 413–468. [Google Scholar] [CrossRef]
- Hao, X.; Kuang, C.; Gu, Z.; Wang, Y.; Li, S.; Ku, Y.; Li, Y.; Ge, J.; Liu, X. From microscopy to nanoscopy via visible light. Light Sci. Appl. 2013, 2, e108. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Xie, H.; Alonas, E.; Liu, Y.; Chen, X.; Santangelo, P.J.; Ren, Q.; Xi, P.; Jin, D. Mirror-enhanced super-resolution microscopy. Light Sci. Appl. 2016, 5, e16134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Qian, N.; Miao, Y.; Zhao, Z.; Chen, C.; Min, W. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. Light Sci. Appl. 2021, 10, 87. [Google Scholar] [CrossRef]
- Gao, D.; Ding, W.; Nieto-Vesperinas, M.; Ding, X.; Rahman, M.; Zhang, T.; Lim, C.; Qiu, C.W. Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects. Light Sci. Appl. 2017, 6, e17039. [Google Scholar] [CrossRef]
- Yuan, G.H.; Rogers, E.T.F.; Zheludev, N.I. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci. Appl. 2017, 6, e17036. [Google Scholar] [CrossRef] [Green Version]
- Eberle, A.L.; Mikula, S.; Schalek, R.; Lichtman, J.; Tate, M.K.; Zeidler, D. High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J. Microsc. 2015, 259, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Browning, N.D.; Chisholm, M.; Pennycook, S.J. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 1993, 366, 143–146. [Google Scholar] [CrossRef]
- Huang, B.; Bates, M.; Zhuang, X. Super-resolution fluorescence microscopy. Annual Rev. Biochem. 2009, 78, 993–1016. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Huang, X.; Li, L.; Mao, H.; Mo, Y.; Zhang, G.; Zhang, Z.; Shen, J.; Liu, W.; Wu, Z.; et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci. Appl. 2020, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Ash, E.A.; Nicholls, G. Super-resolution aperture scanning microscope. Nature 1972, 237, 510–512. [Google Scholar] [CrossRef]
- Pohl, D.W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 1984, 44, 651–653. [Google Scholar] [CrossRef]
- Hosaka, N.; Saiki, T. Near-field fluorescence imaging of single molecules with a resolution in the range of 10 nm. J. Microsc. 2001, 202, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub–diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wang, H.; Ding, K.H.; Tsang, L. Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface. Opt. Lett. 2012, 37, 1295–1297. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Zhao, Z.; Wang, Y.; Gao, P.; Luo, Y.; Luo, X. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: A review. Micromachines 2016, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Ivinskaya, A.; Petrov, M.I.; Bogdanov, A.A.; Shishkin, I.; Ginzburg, P.; Shalin, A.S. Plasmon-assisted optical trapping and anti-trapping. Light Sci. Appl. 2017, 6, e16258. [Google Scholar] [CrossRef]
- Crozier, K.B. Quo vadis, plasmonic optical tweezers? Light Sci. Appl. 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Mestres, P.; Berthelot, J.; Aćimović, S.S.; Quidant, R. Unraveling the optomechanical nature of plasmonic trapping. Light Sci. Appl. 2016, 5, e16092. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Svitelskiy, O.V.; Maslov, A.V.; Carnegie, D.; Rafailov, E.; Astratov, V.N. Giant resonant light forces in microspherical photonics. Light Sci. Appl. 2013, 2, e64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef]
- Bykov, D.S.; Xie, S.; Zeltner, R.; Machnev, A.; Wong, G.K.; Euser, T.G.; Russell, P.S.J. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light Sci. Appl. 2018, 7, 22. [Google Scholar] [CrossRef]
- Upputuri, P.K.; Pramanik, M. Microsphere-aided optical microscopy and its applications for super-resolution imaging. Opt. Commun. 2017, 404, 32–41. [Google Scholar] [CrossRef]
- Toropov, N.; Cabello, G.; Serrano, M.P.; Gutha, R.R.; Rafti, M.; Vollmer, F. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl. 2021, 10, 42. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Bu, J.; Zhu, S.; Yuan, X.C. Microlens-array-enabled on-chip optical trapping and sorting. Appl. Opt. 2011, 50, 318–322. [Google Scholar] [CrossRef]
- Chen, Z.; Taflove, A.; Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 2004, 12, 1214–1220. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, W.; Li, L.; Luk’Yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.; Hong, M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [Green Version]
- Ferrand, P.; Wenger, J.; Devilez, A.; Pianta, M.; Stout, B.; Bonod, N.; Popov, E.; Rigneault, H. Direct imaging of photonic nanojets. Opt. Express 2008, 16, 6930–6940. [Google Scholar] [CrossRef]
- Yousefi, M.; Scharf, T.; Rossi, M. Photonic nanojet generation under converging and diverging beams. J. Opt. Soc. Am. B 2021, 38, 317–326. [Google Scholar] [CrossRef]
- Han, L.; Han, Y.; Gouesbet, G.; Wang, J.; Gréhan, G. Photonic jet generated by spheroidal particle with Gaussian-beam illumination. J. Opt. Soc. Am. B 2014, 31, 1476–1483. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.S.; Paniagua-Domínguez, R.; Minin, I.; Minin, O.; Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow. Opt. Mater. Express 2017, 7, 1820–1847. [Google Scholar] [CrossRef]
- Darafsheh, A.; Bollinger, D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Opt. Commun. 2017, 402, 270–275. [Google Scholar] [CrossRef]
- Gu, G.; Song, J.; Chen, M.; Peng, X.; Liang, H.; Qu, J. Single nanoparticle detection using a photonic nanojet. Nanoscale 2018, 10, 14182–14189. [Google Scholar] [CrossRef]
- Tsai, M.C.; Tsai, T.L.; Shieh, D.B.; Chiu, H.T.; Lee, C.Y. Detecting HER2 on cancer cells by TiO2 spheres Mie scattering. Anal. Chem. 2009, 81, 7590–7596. [Google Scholar] [CrossRef]
- Darafsheh, A. Photonic nanojets and their applications. J. Phys. Photon. 2021, 3, 022001. [Google Scholar] [CrossRef]
- Lecler, S.; Haacke, S.; Lecong, N.; Crégut, O.; Rehspringer, J.L.; Hirlimann, C. Photonic jet driven non-linear optics: Example of two-photon fluorescence enhancement by dielectric microspheres. Opt. Express 2007, 15, 4935–4942. [Google Scholar] [CrossRef]
- Biccari, F.; Hamilton, T.; Ristori, A.; Sanguinetti, S.; Bietti, S.; Gurioli, M.; Mohseni, H. Quantum dots luminescence collection enhancement and nanoscopy by dielectric microspheres. Part. Part. Syst. Charact. 2020, 37, 1900431. [Google Scholar] [CrossRef]
- Das, G.M.; Ringne, A.B.; Dantham, V.R.; Easwaran, R.K.; Laha, R. Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques. Opt. Express 2017, 25, 19822–19831. [Google Scholar] [CrossRef]
- Ren, Y.X.; Zeng, X.; Zhou, L.M.; Kong, C.; Mao, H.; Qiu, C.W.; Tsia, K.K.; Wong, K.K. Photonic nanojet mediated backaction of dielectric microparticles. ACS Photonics 2020, 7, 1483–1490. [Google Scholar] [CrossRef]
- Sun, S.; Li, M.; Du, Q.; Png, C.E.; Bai, P. Metal–dielectric hybrid dimer nanoantenna: Coupling between surface plasmons and dielectric resonances for fluorescence enhancement. J. Phys. Chem. C 2017, 121, 12871–12884. [Google Scholar] [CrossRef]
- Migliozzi, D.; Gijs, M.A.; Huszka, G. Microsphere-mediated optical contrast tuning for designing imaging systems with adjustable resolution gain. Sci. Reports 2018, 8, 15211. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Guo, W.; Yan, Y.; Lee, S.; Wang, T. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl. 2013, 2, e104. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Kuang, C.; Liu, X.; Zhang, H.; Li, Y. Microsphere based microscope with optical super-resolution capability. Appl. Phys. Lett. 2011, 99, 203102. [Google Scholar] [CrossRef]
- Darafsheh, A.; Walsh, G.F.; Dal Negro, L.; Astratov, V.N. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett. 2012, 101, 141128. [Google Scholar] [CrossRef] [Green Version]
- Darafsheh, A.; Limberopoulos, N.I.; Derov, J.S.; Walker, D.E., Jr.; Durska, M.; Krizhanovskii, D.N.; Whittaker, D.M.; Astratov, V.N. Optical microscopy with super-resolution by liquid-immersed high-index microspheres. Proc. SPIE 2013, 8594, 85940C. [Google Scholar] [CrossRef]
- Darafsheh, A.; Limberopoulos, N.I.; Derov, J.S.; Walker, D.E., Jr.; Astratov, V.N. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl. Phys. Lett. 2014, 104, 061117. [Google Scholar] [CrossRef]
- Darafsheh, A.; Guardiola, C.; Palovcak, A.; Finlay, J.C.; Cárabe, A. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Letters 2015, 40, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Heifetz, A.; Kong, S.C.; Sahakian, A.V.; Taflove, A.; Backman, V. Photonic nanojets. J. Comput. Theor. Nanosci. 2009, 6, 1979–1992. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, Y.; Zhou, W.; Yu, M.; Urbach, H.P.; Wu, Y. Effects of whispering gallery mode in microsphere super-resolution imaging. Appl. Phys. B 2017, 123, 236. [Google Scholar] [CrossRef]
- Ristori, A.; Hamilton, T.; Toliopoulos, D.; Felici, M.; Pettinari, G.; Sanguinetti, S.; Gurioli, M.; Mohseni, H.; Biccari, F. Photonic jet writing of quantum dots self-aligned to dielectric microspheres. Adv. Quantum Technol. 2021, 4, 2100045. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D.J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Scharf, T.; Mühlig, S.; Rockstuhl, C.; Herzig, H.P. Engineering photonic nanojets. Opt. Express 2011, 19, 10206–10220. [Google Scholar] [CrossRef]
- Wang, B.; Barbiero, M.; Zhang, Q.M.; Gu, M. Super-resolution optical microscope: Principle, instrumentation, and application. Front. Inf. Technol. Electron. Eng. 2019, 20, 608–630. [Google Scholar] [CrossRef]
- Yang, H.; Trouillon, R.; Huszka, G.; Gijs, M.A. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett. 2016, 16, 4862–4870. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Taflove, A.; Backman, V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express 2005, 13, 526–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasim, J.; Ting, Y.; Meng, Y.Y.; Ping, L.J.; See, A.; Jong, L.L.; Xiang, S.Z. Near-field Raman imaging using optically trapped dielectric microsphere. Opt. Express 2008, 16, 7976–7984. [Google Scholar] [CrossRef] [PubMed]
- Lecler, S.; Takakura, Y.; Meyrueis, P. Properties of a three-dimensional photonic jet. Opt. Lett. 2005, 30, 2641–2643. [Google Scholar] [CrossRef]
- Yue, L.; Yan, B.; Monks, J.N.; Dhama, R.; Jiang, C.; Minin, O.V.; Minin, I.V.; Wang, Z. Full three-dimensional Poynting vector flow analysis of great field-intensity enhancement in specifically sized spherical-particles. Sci. Rep. 2019, 9, 20224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Li, L.; Wang, Z.; Guo, W.; Yan, Y.; Wang, T. Immersed transparent microsphere magnifying sub-diffraction-limited objects. Appl. Opt. 2013, 52, 7265–7270. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Kasim, J.; You, Y.M.; Shi, D.N.; Shen, Z.X. Enhancement of Raman scattering by individual dielectric microspheres. J. Raman Spectrosc. 2011, 42, 145–148. [Google Scholar] [CrossRef]
- Sundaram, V.M.; Wen, S.B. Analysis of deep sub-micron resolution in microsphere based imaging. Appl. Phys. Lett. 2014, 105, 204102. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, B. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light Sci. Appl. 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Minin, I.V.; Minin, O.V.; Pacheco-Peña, V.; Beruete, M. Subwavelength, standing-wave optical trap based on photonic jets. Quantum Electron. 2016, 46, 555. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Cao, Y.; Liu, Z.; Geints, Y.E.; Karabchevsky, A. Optical vacuum cleaner by optomechanical manipulation of nanoparticles using nanostructured mesoscale dielectric cuboid. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bahng, J.H.; Jahani, S.; Montjoy, D.G.; Yao, T.; Kotov, N.; Marandi, A. Mie resonance engineering in meta-shell supraparticles for nanoscale nonlinear optics. ACS Nano 2020, 14, 17203–17212. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Glinskiy, I.A.; Khabibullin, R.A.; Malureanu, R.; Lavrinenko, A.V.; Yakubovsky, D.I.; Arsenin, A.V.; Volkov, V.S.; Ponomarev, D.S. Plasmonic nanojet: An experimental demonstration. Opt. Lett. 2020, 45, 3244–3247. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Jiang, C.; Chen, P.; Wang, W.; Zhang, Z. Miniature self-mixing interferometer based on a microsphere superlens for microactuator displacement measurement. Opt. Commun. 2021, 498, 127212. [Google Scholar] [CrossRef]
- Zhou, Y.; Hong, M. Formation of a three-dimensional bottle beam via an engineered microsphere. Photonics Res. 2021, 9, 1598–1606. [Google Scholar] [CrossRef]
- Minin, I.V.; Geints, Y.E.; Zemlyanov, A.A.; Minin, O.V. Specular-reflection photonic nanojet: Physical basis and optical trapping application. Opt. Express 2020, 28, 22690–22704. [Google Scholar] [CrossRef]
- Yue, L.; Yan, B.; Monks, J.N.; Dhama, R.; Wang, Z.; Minin, O.V.; Minin, I.V. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization. J. Infrared Milli. Terahz. Waves 2018, 39, 546–552. [Google Scholar] [CrossRef] [Green Version]
- Nguyen Pham, H.H.; Hisatake, S.; Minin, O.V.; Nagatsuma, T.; Minin, I.V. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube. Appl. Photonics 2017, 2, 056106. [Google Scholar] [CrossRef] [Green Version]
- Minin, I.V.; Minin, O.V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images. Opt. Quantum Electron. 2017, 49, 326. [Google Scholar] [CrossRef]
- Ang, A.S.; Karabchevsky, A.; Minin, I.V.; Minin, O.V.; Sukhov, S.V.; Shalin, A.S. ‘Photonic Hook’ based optomechanical nanoparticle manipulator. Sci. Rep. 2018, 8, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Goddard, L.L. Spatial control of photonic nanojets. Opt. Express 2016, 24, 30444–30464. [Google Scholar] [CrossRef]
- Gu, G.; Zhou, R.; Chen, Z.; Xu, H.; Cai, G.; Cai, Z.; Hong, M. Super-long photonic nanojet generated from liquid-filled hollow microcylinder. Opt. Lett. 2015, 40, 625–628. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Geints, Y.E.; Panina, E.K.; Karabchevsky, A. Optical manipulation of micro-and nanoobjects based on structured mesoscale particles: A brief review. Atmos. Oceanic Opt. 2020, 33, 464–469. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Z.; Minin, O.V.; Minin, I.V. Deep subwavelength-scale light focusing and confinement in nanohole-structured mesoscale dielectric spheres. Nanomaterials 2019, 9, 186. [Google Scholar] [CrossRef] [Green Version]
- Minin, I.V.; Minin, O.V. Recent trends in optical manipulation inspired by mesoscale photonics and diffraction optics. J. Biomed. Photonics Eng. 2020, 6, 020301. [Google Scholar] [CrossRef]
- Minin, O.V.; Minin, I.V.; Cao, Y. Optical magnet for nanoparticles manipulations based on optical vacuum cleaner concept. Saratov Fall Meeting 2020: Optical and Nanotechnologies for Biology and Medicine. Int. Soc. Opt. Photonics 2021, 11845, 118451G. [Google Scholar] [CrossRef]
- Bekirov, A.R.; Luk’yanchuk, B.S.; Fedyanin, A.A. Virtual image within a transparent dielectric sphere. JETP Lett. 2020, 112, 341–345. [Google Scholar] [CrossRef]
- Wang, Z.; Luk’yanchuk, B.; Yue, L.; Yan, B.; Monks, J.; Dhama, R.; Minin, O.V.; Minin, I.V.; Huang, S.; Fedyanin, A.A. High order Fano resonances and giant magnetic fields in dielectric microspheres. Sci. Rep. 2019, 9, 20293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huckabay, H.A.; Wildgen, S.M.; Dunn, R.C. Label-free detection of ovarian cancer biomarkers using whispering gallery mode imaging. Biosens. Bioelectron. 2013, 45, 223–229. [Google Scholar] [CrossRef]
- Gerard, D.; Wenger, J.; Devilez, A.; Gachet, D.; Stout, B.; Bonod, N.; Popov, E.; Rigneault, H. Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Opt. Express 2008, 16, 15297–15303. [Google Scholar] [CrossRef]
- Aouani, H.; Schon, P.; Brasselet, S.; Rigneault, H.; Wenger, J. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres. Biomed. Opt. Express 2010, 1, 1075–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Cornaglia, M.; Gijs, M.A. Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano Lett. 2015, 15, 1730–1735. [Google Scholar] [CrossRef]
- Lu, D.; Pedroni, M.; Labrador-Páez, L.; Marqués, M.I.; Jaque, D.; Haro-González, P. Nanojet trapping of a single sub-10 nm upconverting nanoparticle in the full liquid water temperature range. Small 2021, 17, 2006764. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Xu, R.; Li, B. Optical trapping, driving and arrangement of particles using a tapered fibre probe. Sci. Rep. 2012, 2, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, H.; Li, Y.; Liu, X.; Li, B. Escherichia coli-based biophotonic waveguides. Nano Lett. 2013, 13, 3408–3413. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Kollipara, P.S.; Kotnala, A.; Jiang, T.; Liu, Y.; Peng, X.; Korgel, B.A.; Zheng, Y. Opto-thermoelectric pulling of light-absorbing particles. Light Sci. Appl. 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Li, Y.; Xu, D.; Zhang, Y.; Chen, C.H.; Li, B. Single upconversion nanoparticle–bacterium cotrapping for single–bacterium labeling and analysis. Small 2017, 13, 1603418. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Li, B. Optical orientation and shifting of a single multiwalled carbon nanotube. Light Sci. Appl. 2014, 3, e205. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Xin, H.B.; Lei, H.X.; Liu, L.L.; Li, Y.Z.; Zhang, Y.; Li, B.J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci. Appl. 2016, 5, e16176. [Google Scholar] [CrossRef] [PubMed]
- Gérard, D.; Devilez, A.; Aouani, H.; Stout, B.; Bonod, N.; Wenger, J.; Popov, E.; Rigneault, H. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere. J. Opt. Soc. Am. B 2009, 26, 1473–1478. [Google Scholar] [CrossRef]
- Li, Y.; Xin, H.; Zhang, Y.; Lei, H.; Zhang, T.; Ye, H.; Saenz, J.J.; Qiu, C.W.; Li, B. Living nanospear for near-field optical probing. ACS Nano 2018, 12, 10703–10711. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Li, Y.; Li, B. Controllable patterning of different cells via optical assembly of 1D periodic cell structures. Adv. Funct. Mater. 2015, 25, 2816–2823. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Xu, X.; Xin, H.; Zhang, Y.; Li, B. Red-blood-cell waveguide as a living biosensor and micromotor. Adv. Funct. Mater. 2019, 29, 1905568. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Yang, X.; Lei, H.; Zhang, Y.; Li, B. Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano 2017, 11, 10672–10680. [Google Scholar] [CrossRef]
- Chen, X.; Wu, T.; Gong, Z.; Li, Y.; Zhang, Y.; Li, B. Subwavelength imaging and detection using adjustable and movable droplet microlenses. Photonics Res. 2020, 8, 225–234. [Google Scholar] [CrossRef]
- Devilez, A.; Bonod, N.; Stout, B. Near field dielectric microlenses. Proc. SPIE 2010, 7717, 771708. [Google Scholar] [CrossRef]
- Yang, S.; Taflove, A.; Backman, V. Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet. Opt. Express 2011, 19, 7084–7093. [Google Scholar] [CrossRef]
- Li, Y.; Xin, H.; Liu, X.; Zhang, Y.; Lei, H.; Li, B. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano 2016, 10, 5800–5808. [Google Scholar] [CrossRef]
- Yi, K.J.; Wang, H.; Lu, Y.F.; Yang, Z.Y. Enhanced Raman scattering by self-assembled silica spherical microparticles. J. Appl. Phys. 2007, 101, 063528. [Google Scholar] [CrossRef] [Green Version]
- Dantham, V.R.; Bisht, P.B.; Namboodiri, C.K.R. Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere. J. Appl. Phys. 2011, 109, 103103. [Google Scholar] [CrossRef]
- Xing, C.; Yan, Y.; Feng, C.; Xu, J.; Dong, P.; Guan, W.; Zeng, Y.; Zhao, Y.; Jiang, Y. Flexible Microsphere-embedded film for microsphere-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 32896–32906. [Google Scholar] [CrossRef]
- Arya, A.; Laha, R.; Das, G.M.; Dantham, V.R. Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures. J. Raman Spectrosc. 2018, 49, 897–902. [Google Scholar] [CrossRef]
- Gašparić, V.; Ristić, D.; Gebavi, H.; Ivanda, M. Resolution and signal enhancement of Raman mapping by photonic nanojet of a microsphere. Appl. Surf. Sci. 2021, 545, 149036. [Google Scholar] [CrossRef]
- Kang, D.; Pang, C.; Kim, S.M.; Cho, H.S.; Um, H.S.; Choi, Y.W.; Suh, K.Y. Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets. Adv. Mater. 2012, 24, 1709–1715. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, B.; Kim, W.Y.; Min, S.K.; Kim, Y.; Jouravlev, M.V.; Bose, R.; Kim, K.S.; Hwang, I.C.; Kaufman, L.J.; et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 2009, 460, 498–501. [Google Scholar] [CrossRef]
- Murade, C.U.; Ende, V.D.; Mugele, F.G. High speed adaptive liquid microlens array. Opt. Express 2012, 20, 18180–18187. [Google Scholar] [CrossRef] [PubMed]
- Bogucki, A.; Zinkiewicz, Ł.; Grzeszczyk, M.; Pacuski, W.; Nogajewski, K.; Kazimierczuk, T.; Rodek, A.; Suffczyński, J.; Watanabe, K.; Taniguchi, K.; et al. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses. Light Sci. Appl. 2020, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Li, L. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Opt. Commun. 2015, 334, 253–257. [Google Scholar] [CrossRef]
- Fan, W.; Yan, B.; Wang, Z.; Wu, L. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv. 2016, 2, e1600901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, R.; Yan, B.; Palego, C.; Wang, Z. Super-Resolution imaging by dielectric superlenses: TiO2 metamaterial superlens versus BaTiO3 superlens. Photonics 2021, 8, 222. [Google Scholar] [CrossRef]
- Monks, J.N.; Yan, B.; Hawkins, N.; Vollrath, F.; Wang, Z. Spider silk: Mother nature’s bio-superlens. Nano Lett. 2016, 16, 5842–5845. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, W.; Li, T.; Rozen, I.; Zhao, J.; Bahari, B.; Kante, B.; Wang, J. Swimming microrobot optical nanoscopy. Nano Lett. 2016, 16, 6604–6609. [Google Scholar] [CrossRef]
- Zhou, J.; Lian, Z.; Zhou, C.; Bi, S.; Wang, Y. Scanning microsphere array optical microscope for efficient and large area super-resolution imaging. J. Opt. 2020, 22, 105602. [Google Scholar] [CrossRef]
- Wen, Y.; Yu, H.; Zhao, W.; Li, P.; Wang, F.; Ge, Z.; Wang, X.; Liu, L.; Li, W.J. Scanning super-resolution imaging in enclosed environment by laser tweezer controlled superlens. Biophys. J. 2020, 119, 2451–2460. [Google Scholar] [CrossRef]
- Krivitsky, L.A.; Wang, J.J.; Wang, Z.; Luk’yanchuk, B. Locomotion of microspheres for super-resolution imaging. Sci. Rep. 2013, 3, 3501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zhang, D.; Zhang, H.; Han, X.; Xu, R. Super-resolution optical microscopy based on scannable cantilever-combined microsphere. Microsc. Res. Tech. 2015, 78, 1128–1132. [Google Scholar] [CrossRef]
- Allen, K.W.; Farahi, N.; Li, Y.; Limberopoulos, N.I.; Walker, D.E., Jr.; Urbas, A.M.; Liberman, V.; Astratov, V.N. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis. Ann. Phys. 2015, 527, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, P.; Yu, H.; Wang, F.; Wang, X.; Yang, T.; Yang, W.; Li, W.J.; Wang, Y.; Liu, L. Fabrication of flexible microlens arrays for parallel super-resolution imaging. Appl. Surf. Sci. 2020, 504, 144375. [Google Scholar] [CrossRef]
- Yan, Y.; Li, L.; Feng, C.; Guo, W.; Lee, S.; Hong, M. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano 2014, 8, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Moullan, N.; Auwerx, J.; Gijs, M.A. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small 2014, 10, 1712–1718. [Google Scholar] [CrossRef]
- Chernomyrdin, N.V.; Kucheryavenko, A.S.; Kolontaeva, G.S.; Katyba, G.M.; Karalkin, P.A.; Parfenov, V.A.; Gryadunova, A.A.; Norkin, N.E.; Smolyanskaya, O.A.; Minin, O.V.; et al. A potential of terahertz solid immersion microscopy for visualizing sub-wavelength-scale tissue spheroids. Proc. SPIE 2018, 10677, 106771Y. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Yu, H.; Wen, Y.; Yu, P.; Liu, Z.; Wang, Y.; Li, W.J. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat. Commun. 2016, 7, 13748. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Song, W.; Zhao, Y.; Cao, Q.; Wen, A. Optical Trapping, Sensing, and Imaging by Photonic Nanojets. Photonics 2021, 8, 434. https://doi.org/10.3390/photonics8100434
Li H, Song W, Zhao Y, Cao Q, Wen A. Optical Trapping, Sensing, and Imaging by Photonic Nanojets. Photonics. 2021; 8(10):434. https://doi.org/10.3390/photonics8100434
Chicago/Turabian StyleLi, Heng, Wanying Song, Yanan Zhao, Qin Cao, and Ahao Wen. 2021. "Optical Trapping, Sensing, and Imaging by Photonic Nanojets" Photonics 8, no. 10: 434. https://doi.org/10.3390/photonics8100434
APA StyleLi, H., Song, W., Zhao, Y., Cao, Q., & Wen, A. (2021). Optical Trapping, Sensing, and Imaging by Photonic Nanojets. Photonics, 8(10), 434. https://doi.org/10.3390/photonics8100434