Tracing Evolution of Angle-Wavelength Spectrum along the 40-m Postfilament in Corridor Air
Abstract
:1. Introduction
2. Materials And Methods
2.1. Experiment
2.2. Simulations
3. Results And Discussion
3.1. Postfilament Length
3.2. Angle-Wavelength Spectra
3.3. Estimations of Pulse Duration on the ∼100-m Path
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diels, J.C.; Rudolph, W. Ultrashort Laser Pulse Phenomena; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Chiao, R.Y.; Garmire, E.; Townes, C.H. Self-trapping of optical beams. Phys. Rev. Lett. 1964, 13, 479. [Google Scholar] [CrossRef]
- Marburger, J.H. Self-focusing: Theory. Prog. Quantum Electron. 1975, 4, 35–110. [Google Scholar] [CrossRef]
- Braun, A.; Korn, G.; Liu, X.; Du, D.; Squier, J.; Mourou, G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 1995, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Nibbering, E.; Curley, P.; Grillon, G.; Prade, B.; Franco, M.; Salin, F.; Mysyrowicz, A. Conical emission from self-guided femtosecond pulses in air. Opt. Lett. 1996, 21, 62–64. [Google Scholar] [CrossRef]
- Kosareva, O.; Kandidov, V.; Brodeur, A.; Chien, C.; Chin, S. Conical emission from laser–plasma interactions in the filamentation of powerful ultrashort laser pulses in air. Opt. Lett. 1997, 22, 1332–1334. [Google Scholar] [CrossRef]
- Chin, S.L.; Hosseini, S.A.; Liu, W.; Luo, Q.; Théberge, F.; Aközbek, N.; Becker, A.; Kandidov, V.P.; Kosareva, O.G.; Schroeder, H. The propagation of powerful femtosecond laser pulses in optical media: Physics, applications, and new challenges. Can. J. Phys. 2005, 83, 863. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Shlenov, S.A.; Kosareva, O.G. Filamentation of high-power femtosecond laser radiation. Quantum Electron. 2009, 39, 205. [Google Scholar] [CrossRef]
- Chin, S.; Wang, T.J.; Marceau, C.; Wu, J.; Liu, J.; Kosareva, O.; Panov, N.; Chen, Y.; Daigle, J.F.; Yuan, S.; et al. Advances in intense femtosecond laser filamentation in air. Laser Phys. 2012, 22, 1–53. [Google Scholar] [CrossRef]
- Chin, S.L. Femtosecond Laser Filamentation; Springer: Berlin/Heidelberg, Germany, 2010; Volume 55. [Google Scholar]
- Kasparian, J.; Wolf, J.P. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 2008, 16, 466–493. [Google Scholar] [CrossRef] [Green Version]
- Chin, S.L.; Brodeur, A.; Petit, S.; Kosareva, O.G.; Kandidov, V.P. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). J. Nonlinear Opt. Phys. Mater. 1999, 8, 121–146. [Google Scholar] [CrossRef]
- Kasparian, J.; Rodriguez, M.; Méjean, G.; Yu, J.; Salmon, E.; Wille, H.; Bourayou, R.; Frey, S.; André, Y.B.; Mysyrowicz, A.; et al. White-Light Filaments for Atmospheric Analysis. Science 2003, 301, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Gravel, J.F.; Luo, Q.; Boudreau, D.; Tang, X.; Chin, S. Sensing of halocarbons using femtosecond laser-induced fluorescence. Anal. Chem. 2004, 76, 4799–4805. [Google Scholar] [CrossRef]
- Luo, Q.; Xu, H.; Hosseini, S.; Daigle, J.F.; Théberge, F.; Sharifi, M.; Chin, S. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy. Appl. Phys. B 2006, 82, 105–109. [Google Scholar] [CrossRef]
- Daigle, J.F.; Méjean, G.; Liu, W.; Théberge, F.; Xu, H.; Kamali, Y.; Bernhardt, J.; Azarm, A.; Sun, Q.; Mathieu, P.; et al. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy. Appl. Phys. B 2007, 87, 749–754. [Google Scholar] [CrossRef]
- Chin, S.; Xu, H.; Luo, Q.; Théberge, F.; Liu, W.; Daigle, J.; Kamali, Y.; Simard, P.; Bernhardt, J.; Hosseini, S.; et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source. Appl. Phys. B 2009, 95, 1–12. [Google Scholar] [CrossRef]
- Comtois, D.; Chien, C.Y.; Desparois, A.; Génin, F.; Jarry, G.; Johnston, T.W.; Kieffer, J.C.; La Fontaine, B.; Martin, F.; Mawassi, R.; et al. Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse. Appl. Phys. Lett. 2000, 76, 819–821. [Google Scholar] [CrossRef]
- Rodriguez, M.; Sauerbrey, R.; Wille, H.; Woeste, L.; Fujii, T.; André, Y.B.; Mysyrowicz, A.; Klingbeil, L.; Rethmeier, K.; Kalkner, W.; et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments. Opt. Lett. 2002, 27, 772–774. [Google Scholar] [CrossRef]
- Arantchouk, L.; Point, G.; Brelet, Y.; Prade, B.; Carbonnel, J.; André, Y.B.; Mysyrowicz, A.; Houard, A. Large scale tesla coil guided discharges initiated by femtosecond laser filamentation in air. J. Appl. Phys. 2014, 116, 013303. [Google Scholar] [CrossRef]
- Theberge, F.; Daigle, J.F.; Kieffer, J.C.; Vidal, F.; Chateauneuf, M. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chin, S.L.; Miyazaki, K. A comment on lightning control using a femtosecond laser. Jpn. J. Appl. Phys. 1999, 38, 2011. [Google Scholar] [CrossRef]
- Kasparian, J.; Ackermann, R.; André, Y.B.; Méchain, G.; Méjean, G.; Prade, B.; Rohwetter, P.; Salmon, E.; Stelmaszczyk, K.; Yu, J.; et al. Electric events synchronized with laser filaments in thunderclouds. Opt. Express 2008, 16, 5757–5763. [Google Scholar] [CrossRef] [Green Version]
- Produit, T.; Walch, P.; Herkommer, C.; Mostajabi, A.; Moret, M.; Andral, U.; Sunjerga, A.; Azadifar, M.; André, Y.B.; Mahieu, B.; et al. The laser lightning rod project. Eur. Phys. J. Appl. Phys. 2021, 91, 10504. [Google Scholar] [CrossRef]
- Stelmaszczyk, K.; Rohwetter, P.; Méjean, G.; Yu, J.; Salmon, E.; Kasparian, J.; Ackermann, R.; Wolf, J.P.; Woste, L. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 2004, 85, 3977. [Google Scholar] [CrossRef]
- Tzortzakis, S.; Anglos, D.; Gray, D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: Applications in cultural heritage monitoring. Opt. Lett. 2006, 31, 1139–1141. [Google Scholar] [CrossRef]
- Xu, H.; Simard, P.; Kamali, Y.; Daigle, J.F.; Marceau, C.; Bernhardt, J.; Dubois, J.; Châteauneuf, M.; Théberge, F.; Roy, G.; et al. Filament-induced breakdown remote spectroscopy in a polar environment. Laser Phys. 2012, 22, 1767–1770. [Google Scholar] [CrossRef]
- Abdul Kalam, S.; Balaji Manasa Rao, S.V.; Jayananda, M.; Venugopal Rao, S. Standoff femtosecond filament-induced breakdown spectroscopy for classification of geological materials. J. Anal. At. Spectrom. 2020, 35, 3007–3020. [Google Scholar] [CrossRef]
- Kasparian, J.; Sauerbrey, R.; Chin, S. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 2000, 71, 877–879. [Google Scholar] [CrossRef]
- Kosareva, O.; Liu, W.; Panov, N.; Bernhardt, J.; Ji, Z.; Sharifi, M.; Li, R.; Xu, Z.; Liu, J.; Wang, Z.; et al. Can we reach very high intensity in air with femtosecond PW laser pulses? Laser Phys. 2009, 19, 1776–1792. [Google Scholar] [CrossRef]
- Mitryukovskiy, S.I.; Liu, Y.; Houard, A.; Mysyrowicz, A. Re-evaluation of the peak intensity inside a femtosecond laser filament in air. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 094003. [Google Scholar] [CrossRef]
- Tzortzakis, S.; Prade, B.; Franco, M.; Mysyrowicz, A.; Huller, S.; Mora, P. Femtosecond laser-guided electric discharge in air. Phys. Rev. E 2001, 64, 057401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Varma, S.; Antonsen, T.; Milchberg, H. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Phys. Rev. Lett. 2010, 105, 215005. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Théberge, F.; Kosareva, O.; Panov, N.; Kandidov, V.P.; Chin, S.L. Evolution and termination of a femtosecond laser filament in air. Opt. Lett. 2007, 32, 3477–3479. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.; Houard, A.; Prade, B.; Mysyrowicz, A.; Durécu, A.; Moreau, B.; Fleury, D.; Vasseur, O.; Borchert, H.; Diener, K.; et al. Kilometer range filamentation. Opt. Express 2013, 21, 26836–26845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méchain, G.; D’Amico, C.; André, Y.B.; Tzortzakis, S.; Franco, M.; Prade, B.; Mysyrowicz, A.; Couairon, A.; Salmon, E.; Sauerbrey, R. Range of plasma filaments created in air by a multi-terawatt femtosecond laser. Opt. Commun. 2005, 247, 171–180. [Google Scholar] [CrossRef]
- Méchain, G.; Couairon, A.; André, Y.B.; D’Amico, C.; Franco, M.; Prade, B.; Tzortzakis, S.; Mysyrowicz, A.; Sauerbrey, R. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization. Appl. Phys. B 2004, 79, 379–382. [Google Scholar] [CrossRef]
- Shipilo, D.E.; Panov, N.A.; Sunchugasheva, E.S.; Mokrousova, D.V.; Shutov, A.V.; Zvorykin, V.D.; Ustinovskii, N.N.; Seleznev, L.V.; Savel’ev, A.B.; Kosareva, O.G.; et al. Fifteen meter long uninterrupted filaments from sub-terawatt ultraviolet pulse in air. Opt. Express 2017, 25, 25386–25391. [Google Scholar] [CrossRef]
- Kosareva, O.; Panov, N.; Shipilo, D.; Mokrousova, D.; Nikolaeva, I.; Mitina, E.; Koribut, A.; Reutov, A.; Rizaev, G.; Couairon, A.; et al. Postfilament supercontinuum on 100 m path in air. Opt. Lett. 2021, 46, 1125–1128. [Google Scholar] [CrossRef]
- Théberge, F.; Châteauneuf, M.; Ross, V.; Mathieu, P.; Dubois, J. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air. Opt. Lett. 2008, 33, 2515–2517. [Google Scholar] [CrossRef]
- Théberge, F.; Liu, W.; Luo, Q.; Chin, S. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses. Appl. Phys. B 2005, 80, 221–225. [Google Scholar] [CrossRef]
- Chen, Y.; Théberge, F.; Marceau, C.; Xu, H.; Aközbek, N.; Kosareva, O.; Chin, S. Observation of filamentation-induced continuous self-frequency down shift in air. Appl. Phys. B 2008, 91, 219–222. [Google Scholar] [CrossRef]
- Uryupina, D.; Panov, N.; Kurilova, M.; Mazhorova, A.; Volkov, R.; Gorgutsa, S.; Kosareva, O.; Savel’ev, A. 3D Raman bullet formed under filamentation of femtosecond laser pulses in air and nitrogen. Appl. Phys. B 2013, 110, 123–130. [Google Scholar] [CrossRef]
- Faccio, D.; Averchi, A.; Lotti, A.; Di Trapani, P.; Couairon, A.; Papazoglou, D.; Tzortzakis, S. Ultrashort laser pulse filamentation from spontaneous X Wave formation in air. Opt. Express 2008, 16, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- Panov, N.A.; Shipilo, D.E.; Andreeva, V.A.; Uryupina, D.S.; Savel’ev, A.B.; Kosareva, O.G.; Chin, S.L. Robust near-infrared light bullet in 800-nm femtosecond light filaments in air. Appl. Phys. B 2015, 120, 383–387. [Google Scholar] [CrossRef]
- Shipilo, D.; Pushkarev, D.; Panov, N.; Uryupina, D.; Andreeva, V.; Volkov, R.; Balakin, A.; Shkurinov, A.; Babushkin, I.; Morgner, U.; et al. Near-infrared conical emission from 800 nm filament in air. Laser Phys. Lett. 2017, 14, 035401. [Google Scholar] [CrossRef]
- Kosareva, O.; Panov, N.; Uryupina, D.; Kurilova, M.; Mazhorova, A.; Savel’ev, A.; Volkov, R.; Kandidov, V.; Chin, S. Optimization of a femtosecond pulse self-compression region along a filament in air. Appl. Phys. B 2008, 91, 35–43. [Google Scholar] [CrossRef]
- Uryupina, D.; Kurilova, M.; Mazhorova, A.; Panov, N.; Volkov, R.; Gorgutsa, S.; Kosareva, O.; Savel’ev, A.; Chin, S.L. Few-cycle optical pulse production from collimated femtosecond laser beam filamentation. J. Opt. Soc. Am. B 2010, 27, 667–674. [Google Scholar] [CrossRef]
- Daigle, J.F.; Kosareva, O.; Panov, N.; Wang, T.J.; Hosseini, S.; Yuan, S.; Roy, G.; Chin, S. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams. Opt. Comm. 2011, 284, 3601–3606. [Google Scholar] [CrossRef]
- Ting, A.; Gordon, D.F.; Briscoe, E.; Peñano, J.R.; Sprangle, P. Direct characterization of self-guided femtosecond laser filaments in air. Appl. Opt. 2005, 44, 1474–1479. [Google Scholar] [CrossRef]
- Husakou, A.V.; Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 2001, 87, 203901. [Google Scholar] [CrossRef] [Green Version]
- Kolesik, M.; Moloney, J.V. Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 2004, 70, 036604. [Google Scholar] [CrossRef]
- Panov, N.A.; Shipilo, D.E.; Saletsky, A.M.; Liu, W.; Polynkin, P.G.; Kosareva, O.G. Nonlinear transparency window for ultraintense femtosecond laser pulses in the atmosphere. Phys. Rev. A 2019, 100, 023832. [Google Scholar] [CrossRef] [Green Version]
- Panov, N.; Shipilo, D.; Nikolaeva, I.; Kompanets, V.; Chekalin, S.; Kosareva, O. Continuous transition from X-to O-shaped angle-wavelength spectra of a femtosecond filament in a gas mixture. Phys. Rev. A 2021, 103, L021501. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Fedorov, V.Y. Properties of self-focusing of elliptic beams. Quantum Electron. 2004, 34, 1163. [Google Scholar] [CrossRef]
- Prade, B.; Franco, M.; Mysyrowicz, A.; Couairon, A.; Buersing, H.; Eberle, B.; Krenz, M.; Seiffer, D.; Vasseur, O. Spatial mode cleaning by femtosecond filamentation in air. Opt. Lett. 2006, 31, 2601–2603. [Google Scholar] [CrossRef] [PubMed]
- Kandidov, V.; Dormidonov, A.; Kosareva, O.; Akozbek, N.; Scalora, M.; Chin, S. Optimum small-scale management of random beam perturbations in a femtosecond laser pulse. Appl. Phys. B 2007, 87, 29–36. [Google Scholar] [CrossRef]
- Liu, W.; Hosseini, S.; Luo, Q.; Ferland, B.; Chin, S.; Kosareva, O.; Panov, N.; Kandidov, V. Experimental observation and simulations of the self-action of white light laser pulse propagating in air. New J. Phys. 2004, 6, 6. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokrousova, D.V.; Pushkarev, D.V.; Panov, N.A.; Nikolaeva, I.A.; Shipilo, D.E.; Zhidovtsev, N.A.; Rizaev, G.E.; Uryupina, D.S.; Couairon, A.; Houard, A.; et al. Tracing Evolution of Angle-Wavelength Spectrum along the 40-m Postfilament in Corridor Air. Photonics 2021, 8, 446. https://doi.org/10.3390/photonics8100446
Mokrousova DV, Pushkarev DV, Panov NA, Nikolaeva IA, Shipilo DE, Zhidovtsev NA, Rizaev GE, Uryupina DS, Couairon A, Houard A, et al. Tracing Evolution of Angle-Wavelength Spectrum along the 40-m Postfilament in Corridor Air. Photonics. 2021; 8(10):446. https://doi.org/10.3390/photonics8100446
Chicago/Turabian StyleMokrousova, Daria V., Dmitrii V. Pushkarev, Nikolay A. Panov, Irina A. Nikolaeva, Daniil E. Shipilo, Nikita A. Zhidovtsev, Georgy E. Rizaev, Daria S. Uryupina, Arnaud Couairon, Aurélien Houard, and et al. 2021. "Tracing Evolution of Angle-Wavelength Spectrum along the 40-m Postfilament in Corridor Air" Photonics 8, no. 10: 446. https://doi.org/10.3390/photonics8100446
APA StyleMokrousova, D. V., Pushkarev, D. V., Panov, N. A., Nikolaeva, I. A., Shipilo, D. E., Zhidovtsev, N. A., Rizaev, G. E., Uryupina, D. S., Couairon, A., Houard, A., Skryabin, D. V., Savel’ev, A. B., Kosareva, O. G., Seleznev, L. V., & Ionin, A. A. (2021). Tracing Evolution of Angle-Wavelength Spectrum along the 40-m Postfilament in Corridor Air. Photonics, 8(10), 446. https://doi.org/10.3390/photonics8100446