TDTS: Three-Dimensional Traffic Scheduling in Optical Fronthaul Networks with Conv-LSTM
Abstract
:1. Introduction
2. System Model Design
2.1. Fronthaul Network Architecture Design
2.2. Conv-LSTM Approach
3. Three-Dimensional Traffic Scheduling Scheme
3.1. Three-Dimensional Traffic Division
3.2. Conv-LSTM Based Traffic Prediction
3.3. Three-Dimensional Traffic Scheduling (TDTS) Scheme
3.3.1. Priority Model for Traffic Request
3.3.2. Priority Model for Traffic Request
Algorithm 1: Priority-based TDTS Algorithm. |
Input: Traffic data of fronthaul network Output: Resource allocation with DUs and CUs decision |
1. Divide traffic data according to three-dimensional parameters. 2. Train Conv-LSTM model based on three-dimensional division result. 3. For new divided traffic in network do 4. Search the shortest path for 5. If there are enough resources in the path then 6. If priority of is greater than then 7. 3D dividing for getting traffic type of . 8. Calculate remaining capacity of DU. 9. Place the traffic request into DU. 10. Else 11. Place the traffic request into CU. 12. End if 13. Find available resource with the first-fit policy for resource allocation. 14. Else 15. Block or reject . 16. End if 17. End for |
4. Simulation and Result Analysis
4.1. Traffic Prediction Verification
4.2. Performance Comparisons of the Proposed TDTS Scheme in a Static Network Scenario
4.3. Performance Comparisons of the Proposed TDTS Scheme in a Dynamic Network Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hellaoui, H.; Koudil, M.; Bouabdallah, A. Energy efficiency in security of 5G-based IoT: An end-to-end adaptive approach. IEEE Internet Things 2020, 7, 6589–6602. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, J.; Li, C.; Zhao, G.; Sun, Z.; Yao, Q.; Bao, B.; Vasilakos, A.; Zhang, J. BrainIoT: Brain-like productive services provisioning with federated learning in industrial IoT. IEEE Internet Things 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward edge intelligence: Multiaccess edge computing for 5G and Internet of things. IEEE Internet Things 2020, 7, 6722–6747. [Google Scholar] [CrossRef]
- Yang, H.; Yu, A.; Zhang, J.; Nan, J.; Bao, B.; Yao, Q.; Cheriet, M. Data-driven network slicing from core to ran for 5G broadcasting services. IEEE Trans. Broadcast 2021, 67, 23–32. [Google Scholar] [CrossRef]
- Ericsson Mobility Report. Available online: https://www.ericsson.com/en/mobility-report/reports/june-2019 (accessed on 11 October 2021).
- Sarrigiannis, I.; Ramantas, K.; Kartsakli, E.; Mekikis, P.; Antonopoulos, A.; Verikoukis, C. Online VNF lifecycle management in an MEC-enabled 5G IoT architecture. IEEE Internet Things 2020, 7, 4183–4194. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, J.; Yao, H.; Yao, Q.; Yu, A.; Zhang, J. Blockchain-based hierarchical trust networking for JointCloud. IEEE Internet Things 2020, 7, 1667–1677. [Google Scholar] [CrossRef]
- Yang, H.; Bao, B.; Li, C.; Yao, Q.; Yu, A.; Zhang, J.; Ji, Y. Blockchain-enabled tripartite anonymous identification trusted service provisioning in industrial IoT. IEEE Internet Things 2021. [Google Scholar] [CrossRef]
- He, D.; Ai, B.; Guan, K.; Wang, L.; Zhong, Z.; Kürner, T. The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial. IEEE Commun. Surv. Tutor. 2019, 21, 10–27. [Google Scholar] [CrossRef]
- Zhang, J.; Björnson, E.; Matthaiou, M.; Ng, D.; Yang, H.; Love, D. Prospective multiple antenna technologies for beyond 5G. IEEE J. Sel. Area Comm. 2020, 38, 1637–1660. [Google Scholar] [CrossRef]
- Yang, H.; Wang, B.; Yao, Q.; Yu, A.; Zhang, J. Efficient hybrid multi-faults location based on hopfield neural network in 5G coexisting radio and optical wireless networks. IEEE Tran. Cogn. Commun. Netw. 2019, 5, 1218–1228. [Google Scholar] [CrossRef]
- Lu, X.; Petrov, V.; Moltchanov, D.; Andreev, S.; Mahmoodi, T.; Dohler, M. 5G-U: Conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT. IEEE Commun. Mag. 2019, 57, 92–98. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Ji, Y. Can fine-grained functional split benefit to the converged optical-wireless access networks in 5G and beyond? IEEE Trans. Netw. Serv. Manag. 2020, 17, 1774–1787. [Google Scholar] [CrossRef]
- Yang, H.; Liang, Y.; Yuan, J.; Yao, Q.; Yu, A.; Zhang, J. Distributed blockchain-based trusted multidomain collaboration for mobile edge computing in 5G and beyond. IEEE Trans. Ind. Inform. 2020, 16, 7094–7104. [Google Scholar] [CrossRef]
- Giglio, A.; Pagano, A. Scenarios and economic analysis of fronthaul in 5G optical networks. IEEE J. Lightwave Technol. 2019, 37, 585–591. [Google Scholar] [CrossRef]
- Mo, W.; Gutterman, C.; Li, Y.; Zussman, G.; Kilper, D. Deep neural network based dynamic resource reallocation of BBU pools in 5G C-RAN ROADM networks. In Proceedings of the Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018. [Google Scholar]
- Papavassiliou, S.; Tsiropoulou, E.E.; Promponas, P.; Vamvakas, P. A paradigm shift toward satisfaction, realism and efficiency in wireless networks resource sharing. IEEE Netw. 2021, 35, 348–355. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, Q.; Xin, X.; Tian, Q.; Wu, X.; Tao, Y.; Shen, Y.; Cao, G.; Liu, N. Recursive neural network based RRH to BBU resource allocation in 5G fronthaul network. In Proceedings of the Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018. [Google Scholar]
- Greff, K.; Srivastava, R.; Koutník, J.; Steunebrink, B.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.; Yang, H.; Yao, Q.; Li, Y.; Guo, H.; Peng, T.; Li, H.; Zhang, J. Scheduling with flow prediction based on time and frequency 2D classification for hybrid electrical/optical intra-datacenter networks. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Zheng, H.; Lin, F.; Feng, X.; Chen, Y. A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE Trans. Intell. Transp. 2020. [Google Scholar] [CrossRef]
- Zhao, J.; Bao, B.; Yang, H.; Oki, E.; Chatterjee, B. Holding-time- and impairment-aware shared spectrum allocation in mixed-line-rate elastic optical networks. IEEE J. Opt. Commun. Netw. 2019, 11, 322–332. [Google Scholar] [CrossRef]
- Yang, H.; Yao, Q.; Yu, A.; Lee, Y.; Zhang, J. Resource assignment based on dynamic fuzzy clustering in elastic optical networks with multi-core fibers. IEEE Trans. Commun. 2019, 67, 3457–3469. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Zhao, Y.; Ji, Y.; Han, J.; Lian, Y.; Lee, Y. CSO: Cross stratum optimization for optical as a service. IEEE Commun. Mag. 2015, 53, 130–139. [Google Scholar] [CrossRef]
- Zhao, J.; Bao, B.; Chatterjee, B.; Oki, E.; Hu, J.; Ren, D. Dispersion based highest-modulation-first last-fit spectrum allocation scheme for elastic optical networks. IEEE Access 2018, 6, 59907–59916. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, H.; Bao, B.; Yu, A.; Zhang, J.; Cheriet, M. Core and spectrum allocation based on association rules mining in spectrally and spatially elastic optical networks. IEEE Trans. Commun. 2021. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Ji, Y.; Lee, Y. C-RoFN: Multi-stratum resources optimization for cloud-based radio over optical fiber networks. IEEE Commun. Mag. 2016, 54, 118–125. [Google Scholar] [CrossRef]
- Christodoulopoulos, K.; Tomkos, I.; Varvarigos, E. Elastic bandwidth allocation in flexible OFDM-based optical networks. J. Lightwave Technol. 2011, 29, 1354–1366. [Google Scholar] [CrossRef]
- Zhu, Z.; Lu, W.; Zhang, L.; Ansari, N. Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing. J. Lightwave Technol. 2013, 31, 15–22. [Google Scholar] [CrossRef]
- Lechowicz, P.; Tornatore, M.; Włodarczyk, A.; Walkowiak, K. Fragmentation metrics and fragmentation-aware algorithm for spectrally/spatially flexible optical networks. IEEE/OSA J. Opt. Commun. Netw. 2020, 12, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Bao, B.; Yao, Q.; Ren, D.; Hu, J.; Zhao, J. 3D fragmentation metric and RCSA scheme for space division multiplexing elastic optical networks. IEEE Access 2020, 8, 201595–201605. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, H.; Yu, A.; Zhang, J. Transductive transfer learning-based spectrum optimization for resource reservation in seven-core elastic optical networks. J. Lightwave Technol. 2019, 37, 4164–4172. [Google Scholar] [CrossRef]
- Bao, B.; Yang, H.; Yao, Q.; Yu, A.; Chatterjee, B.C.; Oki, E.; Zhang, J. SDFA: A service-driven fragmentation-aware resource allocation in elastic optical networks. IEEE Trans. Netw. Serv. Manag. 2021. [Google Scholar] [CrossRef]
- Assimakopoulos, P.; Zhou, J.; Habei, K.; Elbers, J.; Jungnickel, V.; Gomes, N. A converged evolved ethernet fronthaul for the 5G Era. IEEE J. Sel. Area Commun. 2018, 36, 2528–2537. [Google Scholar] [CrossRef] [Green Version]
- Sung, M.; Kim, J.; Kim, E.; Cho, S.; Won, Y.; Lim, B.; Pyun, S.; Lee, H.; Lee, J.; Lee, J. RoF-based radio access network for 5G mobile communication systems in 28 GHz millimeter-wave. J. Lightwave Technol. 2020, 38, 409–420. [Google Scholar] [CrossRef]
- Yang, H.; Zhan, K.; Kadoch, M.; Liang, Y.; Cheriet, M. BLCS: Brain-like distributed control security in cyber physical systems. IEEE Netw. 2020, 34, 8–15. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, X.; Yao, Q.; Yu, A.; Zhang, J.; Ji, Y. Accurate fault location using deep neural evolution network in cloud data center interconnection. IEEE Trans. Cloud Comput. 2020. [Google Scholar] [CrossRef]
- Alimi, I.; Teixeira, A.; Monteiro, P. Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Commun. Surv. Tutor. 2018, 20, 708–769. [Google Scholar] [CrossRef]
- Chen, X.; Li, B.; Proietti, R.; Lu, H.; Zhu, Z.; Yoo, S. DeepRMSA: A deep reinforcement learning framework for routing, modulation and spectrum assignment in elastic optical networks. J. Lightwave Technol. 2019, 37, 4155–4163. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Farahmand, F.; Jue, J.; Zhu, Z. Knapsack-based drop-and-continue traffic grooming for power and resource efficiency. In Proceedings of the Optical Fiber Communications Conference and Exposition (OFC), Los Angeles, CA, USA, 4–8 March 2012. [Google Scholar]
- Yu, A.; Yang, H.; Nguyen, K.; Zhang, J.; Cheriet, M. Burst traffic scheduling for hybrid E/O switching DCN: An error feedback spiking neural network approach. IEEE Trans. Netw. Serv. Manag. 2021, 18, 882–893. [Google Scholar] [CrossRef]
- Yang, H.; Zhan, K.; Bao, B.; Yao, Q.; Zhang, J.; Cheriet, M. Automatic guarantee scheme for intent-driven network slicing and reconfiguration. J. Netw. Comput. Appl. 2021, 190, 103163. [Google Scholar] [CrossRef]
- Zhu, R.; Li, S.; Wang, P.; Xu, M.; Yu, S. Energy-efficient deep reinforced traffic grooming in elastic optical networks for cloud–fog computing. IEEE Internet Things 2021, 8, 12410–12421. [Google Scholar] [CrossRef]
Notations | Definitions |
---|---|
Q(V, E) | A network topology is presented by Q(V, E), V presents the node set in the network topology, and E presents the link set. |
M | The number of links in the network. |
The maximum occupied wavelength and minimum occupied wavelength in the link, of which ID = i is presented by , respectively. | |
The number of network requests which exist between spectrum blocks being occupied by services in the selected link, of which ID = i is presented by . | |
The connection of which ID = j occupies spectral resources, and contains links, respectively. | |
N | The number of connections that exist in the network at the moment. |
The arriving time and leaving time of request. | |
The time sensitivity of the request. | |
p | The spectrum resources required to process the request. |
The values of LRQP and NRQP, respectively. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, B.; Xu, Z.; Li, C.; Sun, Z.; Liu, S.; Li, Y. TDTS: Three-Dimensional Traffic Scheduling in Optical Fronthaul Networks with Conv-LSTM. Photonics 2021, 8, 451. https://doi.org/10.3390/photonics8100451
Bao B, Xu Z, Li C, Sun Z, Liu S, Li Y. TDTS: Three-Dimensional Traffic Scheduling in Optical Fronthaul Networks with Conv-LSTM. Photonics. 2021; 8(10):451. https://doi.org/10.3390/photonics8100451
Chicago/Turabian StyleBao, Bowen, Zhen Xu, Chao Li, Zhengjie Sun, Sheng Liu, and Yunbo Li. 2021. "TDTS: Three-Dimensional Traffic Scheduling in Optical Fronthaul Networks with Conv-LSTM" Photonics 8, no. 10: 451. https://doi.org/10.3390/photonics8100451
APA StyleBao, B., Xu, Z., Li, C., Sun, Z., Liu, S., & Li, Y. (2021). TDTS: Three-Dimensional Traffic Scheduling in Optical Fronthaul Networks with Conv-LSTM. Photonics, 8(10), 451. https://doi.org/10.3390/photonics8100451