Ultra-Compact and Ultra-Broadband Polarization-Insensitive Mach–Zehnder Interferometer in Silicon-on-Insulator Platform for Quantum Internet Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. The 1 × 2 Beam Splitter Design
2.2. The Output Taper Design
2.3. The Performance of MZI
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Politi, A.; Cryan, M.J.; Rarity, J.G.; Yu, S.; O’Brien, J.L. Silica-on-Silicon Waveguide Quantum Circuits. Science 2008, 320, 646–649. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.; Politi, A.; Stefanov, A.; O’Brien, J.L. Manipulating multi-photon entanglement in waveguide quantum circuits. Nat. Photonics 2009, 3, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Bindal, P.; Sharma, A. Modeling of Ti:LiNbO/sub 3/waveguide directional couplers. IEEE Photonics Technol. Lett. 1992, 4, 728–731. [Google Scholar] [CrossRef]
- Gregory, I.M. Design and Stability Analysis of an Integrated Controller for Highly Flexible Advanced Aircraft Utilizing the Novel Nonlinear Dynamic Inversion. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2004. [Google Scholar]
- Zhang, M.; Chen, K.; Jin, W.; Chiang, K.S. Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer. Appl. Opt. 2016, 55, 4418–4422. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Zhang, M.; Chen, K. Broadband 2 × 2 lithium niobate electro-optic switch based on a Mach–Zehnder interferometer with counter-tapered directional couplers. Appl. Opt. 2017, 56, 8164–8168. [Google Scholar] [CrossRef] [PubMed]
- Barth, C.; Wolters, J.; Schell, A.W.; Probst, J.; Schoengen, M.; Löchel, B.; Kowarik, S.; Benson, O. Miniaturized Bragg-grating couplers for SiN-photonic crystal slabs. Opt. Express 2015, 23, 9803–9811. [Google Scholar] [CrossRef]
- Lu, L.; Xia, L.; Chen, Z.; Chen, L.; Ma, X.S. Three-dimensional entanglement on a silicon chip. NPJ Quantum Inf. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.F.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum Walks of Correlated Photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.H.; Fang, Q.; Song, J.F.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Cascade wide-angle Y-junction 1 × 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator. Opt. Express 2008, 16, 21456–21461. [Google Scholar] [CrossRef]
- Yamada, H.; Tao, C.; Ishida, S.; Arakawa, Y. Optical directional coupler based on Si-wire waveguides. IEEE Photonics Technol. Lett. 2005, 17, 585–587. [Google Scholar] [CrossRef]
- Suzuki, K.; Cong, G.; Tanizawa, K.; Kim, S.H.; Ikeda, K.; Namiki, S.; Kawashima, H. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express 2015, 23, 9086–9092. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, D.; Engin, E.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 2012, 14, 045003. [Google Scholar] [CrossRef]
- Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mančinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiang, X.; Zhou, X.; Wang, J.; Wilkes, C.M.; Loke, T.; O’Gara, S.; Kling, L.; Marshall, G.D.; Santagati, R.; Ralph, T.C.; et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 2018, 12, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenløwe, L.K. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 2017, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, C.M.; Qiang, X.; Wang, J.; Santagati, R.; Paesani, S.; Zhou, X.; Miller, D.; Marshall, G.D.; Thompson, M.G.; O’Brien, J.L. 60dB high-extinction auto-configured Mach–Zehnder interferometer. Opt. Lett. 2016, 41, 5318–5321. [Google Scholar] [CrossRef]
- Cheng, Z.; Tsang, H.K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 2014, 39, 2206–2209. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, J. An Ultracompact Polarization-Insensitive Silicon-Based Strip-to-Slot Power Splitter. IEEE Photonics Technol. Lett. 2016, 28, 536–539. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Liang, L.; Wu, W. Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating. Opt. Commun. 2018, 407, 46–50. [Google Scholar] [CrossRef]
- Wang, J.; Bonneau, D.; Villa, M.; Silverstone, J.W.; Santagati, R.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 2016, 3, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Wang, S.; Dai, D. Polarization-insensitive 2×2 thermo-optic Mach–Zehnder switch on silicon. Opt. Lett. 2018, 43, 2531–2534. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; He, X.; Jie, H.; Zhang, Z. Ultrashort and efficient adiabatic waveguide taper based on thin flat focusing lenses. Opt. Express 2017, 25, 19894–19903. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, W.; Xie, H.; Zhang, N.; Xu, K.; Yao, Y.; Xiao, S.; Song, Q. Adiabatic and Ultracompact Waveguide Tapers Based on Digital Metamaterials. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–6. [Google Scholar] [CrossRef]
- Sethi, P.; Haldar, A.; Selvaraja, S.K. Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator. Opt. Express 2017, 25, 10196–10203. [Google Scholar] [CrossRef]
- Zhang, J.; Kai, G.; Gao, M.; Yang, G.; Yang, J. Design of polarization-insensitive high-visibility silicon-on-insulator quantum interferometer. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.K.; Lu, R.; Peng, D.; Ma, Y.; Ye, S.; Zhang, Y.; Zhang, Z.; Liu, Y. Graphene-Assisted Polarization-Insensitive Electro-absorption Optical Modulator. IEEE Trans. Nanotechnol. 2017, 16, 1004–1010. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Lumerical FDTD. Available online: https://www.lumerical.com/tcad-products/fdtd/ (accessed on 12 September 2021).
- Dai, D.; Wang, Z.; Peters, J.; Bowers, J.E. Compact Polarization Beam Splitter Using an Asymmetrical Mach–Zehnder Interferometer Based on Silicon-on-Insulator Waveguides. IEEE Photonics Technol. Lett. 2012, 24, 673–675. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, Z.; Ma, C.; Chen, X.; Liu, L.; Zhao, W.; Song, X.; Zhang, H.; Yu, Y.; Chen, H.; et al. Ultra-Compact and Ultra-Broadband Polarization-Insensitive Mach–Zehnder Interferometer in Silicon-on-Insulator Platform for Quantum Internet Application. Photonics 2021, 8, 455. https://doi.org/10.3390/photonics8100455
Zhang J, Zhang Z, Ma C, Chen X, Liu L, Zhao W, Song X, Zhang H, Yu Y, Chen H, et al. Ultra-Compact and Ultra-Broadband Polarization-Insensitive Mach–Zehnder Interferometer in Silicon-on-Insulator Platform for Quantum Internet Application. Photonics. 2021; 8(10):455. https://doi.org/10.3390/photonics8100455
Chicago/Turabian StyleZhang, Jingjing, Zhaojian Zhang, Chao Ma, Xuefeng Chen, Liping Liu, Wei Zhao, Xiaoxian Song, Haiting Zhang, Yu Yu, Huan Chen, and et al. 2021. "Ultra-Compact and Ultra-Broadband Polarization-Insensitive Mach–Zehnder Interferometer in Silicon-on-Insulator Platform for Quantum Internet Application" Photonics 8, no. 10: 455. https://doi.org/10.3390/photonics8100455
APA StyleZhang, J., Zhang, Z., Ma, C., Chen, X., Liu, L., Zhao, W., Song, X., Zhang, H., Yu, Y., Chen, H., & Yang, J. (2021). Ultra-Compact and Ultra-Broadband Polarization-Insensitive Mach–Zehnder Interferometer in Silicon-on-Insulator Platform for Quantum Internet Application. Photonics, 8(10), 455. https://doi.org/10.3390/photonics8100455