Tunable Spacing Dual-Wavelength Q-Switched Fiber Laser Based on Tunable FBG Device
Abstract
:1. Introduction
2. Carbon Nanotubes/Polyvinyl Alcohol Blends Preparation
3. Saturable Absorption of CNT Material
4. Experimental and Operation Principles
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, U.; Kim, C.-S.; Kang, J.U. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications. IEEE Photonics Technol. Lett. 2004, 16, 1277–1279. [Google Scholar] [CrossRef]
- Han, Y.G.; Tran, T.; Kim, S.H.; Lee, S.B. Development of a multiwavelength Raman fiber laser based on phase-shifted fiber Bragg gratings for long-distance remote-sensing applications. Opt. Lett. 2005, 30, 1114–1116. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Yang, J.; Du, X. Dual-ring dual-wavelength fiber laser sensor for simultaneous measurement of refractive index and ambient temperature with improved discrimination and detection limit. Appl. Opt. 2019, 58, 7582–7587. [Google Scholar] [CrossRef]
- Yin, B.; Wu, S.; Wang, M.; Liu, W.; Li, H.; Wu, B.; Wang, Q. High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer. Opt. Express 2019, 27, 252–264. [Google Scholar] [CrossRef]
- Sardar, M.; Faisal, M.; Ahmed, K. Simple hollow Core photonic crystal Fiber for monitoring carbon dioxide gas with very high accuracy. Sens. Bio-Sens. Res. 2021, 31, 100401. [Google Scholar] [CrossRef]
- Arman, H.; Olyaee, S. Realization of low confinement loss acetylene gas sensor by using hollow-core photonic bandgap fiber. Opt. Quantum Electron. 2021, 53, 328. [Google Scholar] [CrossRef]
- Jiang, M.; Lin, B.; Shum, P.P.; Tjin, S.C.; Dong, X.; Sun, Q. Tunable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser using a phase-shifted grating on a triangular cantilever. Appl. Opt. 2011, 50, 1900–1904. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Yao, J. Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter. Opt. Express 2009, 17, 12167–12173. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Yao, J. A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation. Opt. Express 2009, 17, 5414–5419. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Dai, Y.; Xie, S. Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation. IEEE Photonics Technol. Lett. 2005, 18, 187–189. [Google Scholar] [CrossRef]
- Yu, J.; Jia, Z.; Xu, L.; Chen, L.; Wang, T.; Chang, G.-K. DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver. IEEE Photonics Technol. Lett. 2006, 18, 1418–1420. [Google Scholar]
- Jeon, M.Y.; Kim, N.; Shin, J.; Jeong, J.S.; Han, S.P.; Lee, C.W.; Leem, Y.A.; Yee, D.S.; Chun, H.S.; Park, K.H. Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation. Opt. Express 2010, 18, 12291–12297. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Minamide, H.; Wang, Y.; Notake, T.; Ohno, S.; Ito, H. Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser. Opt. Express 2011, 19, 779–786. [Google Scholar] [CrossRef]
- Krzempek, K.; Sobon, G.; Abramski, K.M. DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications. Opt. Express 2013, 21, 20023–20031. [Google Scholar] [CrossRef] [PubMed]
- Al-Karadaghi, T.S.; Gutknecht, N.; Jawad, H.A.; Vanweersch, L.; Franzen, R. Evaluation of temperature elevation during root canal treatment with dual wavelength laser: 2780 nm Er, Cr: YSGG and 940 nm diode. Photomed. Laser Surg. 2015, 33, 460–466. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Wang, H.; Hu, G. Single- and dual-wavelength fiber laser with multi-transverse modes. Opt. Express 2021, 29, 20299–20306. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Dong, Y.; Wang, M.; Jian, S. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel. Opt. Fiber Technol. 2018, 41, 212–216. [Google Scholar] [CrossRef]
- Durán-Sánchez, M.; Álvarez-Tamayo, R.I.; Posada-Ramírez, B.; Ibarra-Escamilla, B.; Kuzin, E.A.; Cruz, J.L.; Andrés, M.V. Tunable dual-wavelength thulium-doped fiber laser based on FBGs and a Hi-Bi FOLM. IEEE Photonics Technol. Lett. 2017, 29, 1820–1823. [Google Scholar] [CrossRef] [Green Version]
- Yan, N.; Han, X.; Chang, P.; Huang, L.; Gao, F.; Yu, X.; Zhang, W.; Zhang, Z.; Zhang, G.; Xu, J. Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach–Zehnder interferometer. Opt. Express 2017, 25, 27609–27615. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Jiang, Y.; Zhang, L.; Gao, H.; Wang, S.; Jiang, L. Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors. IEEE Photonics Technol. Lett. 2018, 30, 1380–1383. [Google Scholar] [CrossRef]
- Wu, J.L.; Huang, Y.L.; Yang, Y.D.; Xiao, J.L.; Qin, G.S.; Huang, Y.Z. Wideband multiwavelength Brillouin fiber laser based on dual-mode AlGaInAs/InP microcavity lasers. Appl. Opt. 2020, 59, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, Z.; Weng, H.; Li, Z.; Yang, Y.; Xiao, J.; Chen, S.; Huang, Y.; Qin, W.; Qin, G. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. Laser Phys. Lett. 2018, 15, 055103. [Google Scholar] [CrossRef]
- Zainol Abidin, N.H.; Abu Bakar, M.H.; Tamchek, N.; Mahamd Adikan, F.R.; Mahdi, M.A. Pump distribution effect in dual-wavelength Raman-erbium random distributed feedback fiber laser. Opt. Express 2018, 26, 15411–15419. [Google Scholar] [CrossRef] [PubMed]
- Galiakhmetova, D.; Gladush, Y.; Mkrtchyan, A.; Fedorov, F.S.; Khabushev, E.; Krasnikov, D.; Chinnambedu-Murugesan, R.; Manuylovich, E.; Dvoyrin, V.; Rozhin, A. Direct measurement of carbon nanotube temperature between fiber ferrules as a universal tool for saturable absorber stability investigation. Carbon 2021, 184, 941–948. [Google Scholar] [CrossRef]
- Silva, L.C.; Castellani, C.E. Recent progress in optical dark pulses generation based on saturable absorber materials. Opt. Fiber Technol. 2021, 64, 102560. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, X.; Tong, M.; Mollaee, M.; Wiersma, K.; AlYahyaei, K.; Zong, J.; Chavez, A.; Peyghambarian, N. Ho3+-Doped All-Fiber Laser Q-Switched by D-Shaped Fiber Carbon-Nanotube Saturable Absorber. IEEE Photonics Technol. Lett. 2019, 31, 1960–1963. [Google Scholar] [CrossRef]
- Lau, K.; Ng, E.; Bakar, M.A.; Abas, A.; Alresheedi, M.; Yusoff, Z.; Mahdi, M. Low threshold L-band mode-locked ultrafast fiber laser assisted by microfiber-based carbon nanotube saturable absorber. Opt. Commun. 2018, 413, 249–254. [Google Scholar] [CrossRef]
- Guo, P.; Li, X.; Feng, T.; Zhang, Y.; Xu, W. Few-layer bismuthene for coexistence of harmonic and dual wavelength in a mode-locked fiber laser. ACS Appl. Mater. Interfaces 2020, 12, 31757–31763. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Luo, M.; Jing, Z.; Chen, H. A tunable dual-wavelength fiber ring-cavity laser based on a FBG and DFB laser injection. Optik 2020, 203, 163961. [Google Scholar] [CrossRef]
- Luo, M.; Cao, W.; Chen, H. Dual-wavelength ring-cavity continuous-wave fiber laser based on semiconductor optical amplifier. Optik 2018, 168, 698–702. [Google Scholar] [CrossRef]
- Feng, X.; Sun, L.; Xiong, L.; Liu, Y.; Yuan, S.; Kai, G.; Dong, X. Switchable and tunable dual-wavelength erbium-doped fiber laser based on one fiber Bragg grating. Opt. Fiber Technol. 2004, 10, 275–282. [Google Scholar] [CrossRef]
- Ibarra-Escamilla, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R.; Posada-Ramírez, B.; Prieto-Cortés, P.; Kuzin, E.; Cruz, J.L.; Andrés, M.V. Tunable dual-wavelength operation of an all-fiber thulium-doped fiber laser based on tunable fiber Bragg gratings. J. Opt. 2018, 20, 085702. [Google Scholar] [CrossRef]
- Wang, D.; Song, H.; Long, X.; Li, L. Switchable and tunable multi-wavelength emissions in pulsed ytterbium fiber lasers with black phosphorus saturable absorbers and polarization-maintaining fiber Bragg gratings. Opt. Commun. 2019, 452, 373–379. [Google Scholar] [CrossRef]
- Zalkepali, N.U.H.H.; Awang, N.A.; Latif, A.A.; Zakaria, Z.; Yuzaile, Y.R.; Mahmud, N.N.H.E.N. Switchable dual-wavelength Q-switched fiber laser based on sputtered indium tin oxide as saturable absorber. Results Phys. 2020, 17, 103187. [Google Scholar] [CrossRef]
- Ahmad, A.; Ismail, M.F.; Hassan, S.N.M.; Ahmad, F.; Zulkifli, M.Z.; Harun, S.W. Multiwall carbon nanotube polyvinyl alcohol-based saturable absorber in passively Q-switched fiber laser. Appl. Opt. 2014, 53, 7025–7029. [Google Scholar] [CrossRef] [PubMed]
- Radzi, N.; Latif, A.A.; Ismail, M.F.; Liew, J.Y.C.; Wang, E.; Lee, H.; Tamcheck, N.; Awang, N.A.; Ahmad, F.; Halimah, M.K. Q-switched fiber laser based on CdS quantum dots as a saturable absorber. Results Phys. 2020, 16, 103123. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, J.; Lee, J.H. Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode-locking. JOSA B 2015, 32, 31–37. [Google Scholar] [CrossRef]
- Xu, X.; Ruan, S.; Zhai, J.; Li, L.; Pei, J.; Tang, Z. Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes. Photonics Res. 2018, 6, 996–1002. [Google Scholar] [CrossRef]
- Liu, W.; Liu, M.; OuYang, Y.; Hou, H.; Lei, M.; Wei, Z. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 2018, 29, 394002. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, W.; Wei, Z. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser. J. Lightwave Technol. 2019, 37, 3100–3105. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Liao, C.; Wang, Y.; Liu, S.; Guo, K.; Zhou, J.; Li, Z.; Tan, Z.; Wang, Y. Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing. J. Lightwave Technol. 2017, 35, 4670–4676. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, J.; Jian, S. A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser. Opt. Commun. 2013, 288, 97–100. [Google Scholar] [CrossRef]
- Ahmad, H.; Zulkifli, M.Z.; Latif, A.A.; Harun, S.W. Tunable dual wavelength fiber laser incorporating AWG and optical channel selector by controlling the cavity loss. Opt. Commun. 2009, 282, 4771–4775. [Google Scholar] [CrossRef]
- Ahmad, H.; Soltanian, M.; Pua, C.; Zulkifli, M.; Harun, S. Narrow spacing dual-wavelength fiber laser based on polarization dependent loss control. IEEE Photonics J. 2013, 5, 1502706. [Google Scholar] [CrossRef]
- Kuang, Y.; Guo, Y.; Xiong, L.; Liu, W. Packaging and temperature compensation of fiber Bragg grating for strain sensing: A survey. Photonic Sens. 2018, 8, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Al-Hayali, S.; Al-Janabi, A. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization. Laser Phys. 2018, 28, 035103. [Google Scholar] [CrossRef]
- Latiff, A.; Kadir, N.; Ismail, E.; Shamsuddin, H.; Ahmad, H.; Harun, S. All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber. Opt. Commun. 2017, 389, 29–34. [Google Scholar] [CrossRef]
- Zou, C.; Huang, Q.; Wang, T.; Yan, Z.; AlAraimi, M.; Rozhin, A.; Mou, C. Single/dual-wavelength switchable bidirectional Q-switched all-fiber laser using a bidirectional fiber polarizer. Opt. Lett. 2018, 43, 4819–4822. [Google Scholar] [CrossRef] [PubMed]
- Svelto, O. Principles of Lasers, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chen, Y.; Zhao, C.; Chen, S.; Du, J.; Tang, P.; Jiang, G.; Zhang, H.; Wen, S.; Tang, D. Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 315–322. [Google Scholar] [CrossRef]
- Lin, S.T.; Chang, G.W.; Lin, Y.Y.; Huang, Y.C.; Chiang, A.C.; Chen, Y.H. Monolithically integrated laser Bragg Q-switchand wavelength converter in a PPLN crystal. Opt. Express 2007, 15, 17093–17098. [Google Scholar] [CrossRef] [Green Version]
- Carrig, T.J. Novel pulsed solid-state sources for laser remote sensing. Proc. SPIE 2004, 5620, 187–198. [Google Scholar]
- Ahmad, H.; Latif, A.A.; Zulkifli, M.Z.; Awang, N.A.; Harun, S.W. Temperature sensing using frequency beating technique from single longitudinal mode fiber laser. IEEE Sens. J. 2021, 12, 2496–2500. [Google Scholar] [CrossRef]
- Xu, M.G.; Archambault, J.L.; Reekie, L.; Dakin, J.P. Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors. Electron. Lett. 1994, 30, 1085. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yan, F.; Feng, T.; Wu, B.; Dong, Z.; Chang, G.-K. Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror. Appl. Opt. 2014, 53, 5522–5526. [Google Scholar] [CrossRef] [PubMed]
Configuration | Laser Type | Dual Lasing Element | Technique | Tuning Range (nm) | Ref. |
---|---|---|---|---|---|
SOA | CW laser | λ1 = FBG | Temperature control | 2.08 to 5.34 nm | [29] |
λ2 = DFB laser | |||||
SOA | CW laser | λ1 = cascaded FBG | Temperature control | 0.18 to 0.6 nm | [30] |
λ2 = cascaded FBG | |||||
TDFL | CW laser | λ1 = tunable FBG | Strain application | 1.7 to 3.7 nm | [32] |
λ2 = tunable FBG | |||||
TDFL | CW laser | λ1 = FBG | Stretch application | 0 to 5.14 nm | [55] |
λ2 = translation FBG | |||||
YDF | Pulsed laser | PM-FBG | Adjusting polarization state | 0.02 to 0.52 nm | [33] |
EDFL | Pulsed laser | λ1 = FBG | Strain application | 0.0469 to 0.3344 nm | [This work] |
λ2 = metal block FBG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzi, N.M.; Latif, A.A.; Ismail, M.F.; Liew, J.Y.C.; Awang, N.A.; Lee, H.K.; Ahmad, F.; Norizan, S.F.; Ahmad, H. Tunable Spacing Dual-Wavelength Q-Switched Fiber Laser Based on Tunable FBG Device. Photonics 2021, 8, 524. https://doi.org/10.3390/photonics8120524
Radzi NM, Latif AA, Ismail MF, Liew JYC, Awang NA, Lee HK, Ahmad F, Norizan SF, Ahmad H. Tunable Spacing Dual-Wavelength Q-Switched Fiber Laser Based on Tunable FBG Device. Photonics. 2021; 8(12):524. https://doi.org/10.3390/photonics8120524
Chicago/Turabian StyleRadzi, Nurnazifah M., Amirah A. Latif, Mohammad F. Ismail, Josephine Y. C. Liew, Noor A. Awang, Han K. Lee, Fauzan Ahmad, Siti F. Norizan, and Harith Ahmad. 2021. "Tunable Spacing Dual-Wavelength Q-Switched Fiber Laser Based on Tunable FBG Device" Photonics 8, no. 12: 524. https://doi.org/10.3390/photonics8120524
APA StyleRadzi, N. M., Latif, A. A., Ismail, M. F., Liew, J. Y. C., Awang, N. A., Lee, H. K., Ahmad, F., Norizan, S. F., & Ahmad, H. (2021). Tunable Spacing Dual-Wavelength Q-Switched Fiber Laser Based on Tunable FBG Device. Photonics, 8(12), 524. https://doi.org/10.3390/photonics8120524