High Operating Temperature InAs/GaSb Superlattice Based Mid Wavelength Infrared Photodetectors Grown by MOCVD
Abstract
:1. Introduction
2. Theory and Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martyniuk, P.; Rogalski, A. HOT Infrared Photodetectors. Opto-Electron. Rev. 2013, 21, 239–257. [Google Scholar] [CrossRef]
- Manissadjian, A.; Rubaldo, L.; Rebeil, Y.; Kerlain, A.; Brellier, D.; Mollard, L. Improved IR Detectors to Swap Heavy Systems for SWaP. In Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 1 May 2012; Andresen, B.F., Fulop, G.F., Norton, P.R., Eds.; pp. 835334–835339. [Google Scholar]
- Kinch, M.A. State-of-the-Art Infrared Detector Technology; SPIE Press: Bellingham, WA, USA, 2014; ISBN 978-1-62841-289-5. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Type-II Superlattice Photodetectors versus HgCdTe Photodiodes. Prog. Quantum Electron. 2019, 68, 100228. [Google Scholar] [CrossRef]
- Haugan, H.J.; Olson, B.V.; Brown, G.J.; Kadlec, E.A.; Kim, J.K.; Shaner, E.A. Significantly Enhanced Carrier Lifetimes of Very Long-Wave Infrared Absorbers Based on Strained-Layer InAs/GaInSb Superlattices. Opt. Eng. 2017, 56, 091604. [Google Scholar] [CrossRef]
- Maimon, S.; Wicks, G.W. NBn Detector, an Infrared Detector with Reduced Dark Current and Higher Operating Temperature. Appl. Phys. Lett. 2006, 89, 151109. [Google Scholar] [CrossRef]
- Razeghi, M.; Abdollahi Pour, S.; Huang, E.; Chen, G.; Haddadi, A.; Nguyen, B. Type-II InAs/GaSb Photodiodes and Focal Plane Arrays Aimed at High Operating Temperatures. Opto-Electron. Rev. 2011, 19, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, G.; Han, X.; Xiang, W.; Jiang, D.; Jiang, Z.; Hao, H.; Lv, Y.; Guo, C.; Xu, Y.; et al. 320 × 256 High Operating Temperature Mid-Infrared Focal Plane Arrays Based on Type-II InAs/GaSb Superlattice. Superlattices Microstruct. 2017, 111, 783–788. [Google Scholar] [CrossRef]
- Chen, G.; Haddadi, A.; Hoang, A.-M.; Chevallier, R.; Razeghi, M. Demonstration of Type-II Superlattice MWIR Minority Carrier Unipolar Imager for High Operation Temperature Application. Opt. Lett. 2015, 40, 45. [Google Scholar] [CrossRef]
- Ting, D.Z.; Soibel, A.; Khoshakhlagh, A.; Rafol, S.B.; Keo, S.A.; Höglund, L.; Fisher, A.M.; Luong, E.M.; Gunapala, S.D. Mid-Wavelength High Operating Temperature Barrier Infrared Detector and Focal Plane Array. Appl. Phys. Lett. 2018, 113, 021101. [Google Scholar] [CrossRef]
- Soibel, A.; Ting, D.Z.; Rafol, S.B.; Fisher, A.M.; Keo, S.A.; Khoshakhlagh, A.; Gunapala, S.D. Mid-Wavelength Infrared InAsSb/InAs NBn Detectors and FPAs with Very Low Dark Current Density. Appl. Phys. Lett. 2019, 114, 161103. [Google Scholar] [CrossRef]
- Wu, D.; Li, J.; Dehzangi, A.; Razeghi, M. Mid-Wavelength Infrared High Operating Temperature PBn Photodetectors Based on Type-II InAs/InAsSb Superlattice. AIP Adv. 2020, 10, 025018. [Google Scholar] [CrossRef] [Green Version]
- Juergensen, H. MOCVD Technology in Research, Development and Mass Production. Mater. Sci. Semicond. Process. 2001, 4, 467–474. [Google Scholar] [CrossRef]
- Huang, Y.; Ryou, J.-H.; Dupuis, R.D.; Zuo, D.; Kesler, B.; Chuang, S.-L.; Hu, H.; Kim, K.-H.; Ting Lu, Y.; Hsieh, K.C.; et al. Strain-Balanced InAs/GaSb Type-II Superlattice Structures and Photodiodes Grown on InAs Substrates by Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett. 2011, 99, 011109. [Google Scholar] [CrossRef]
- Wu, D.; Dehzangi, A.; Razeghi, M. Demonstration of Mid-Wavelength Infrared NBn Photodetectors Based on Type-II InAs/InAs1-xSbx Superlattice Grown by Metal-Organic Chemical Vapor Deposition. Appl. Phys. Lett. 2019, 115, 061102. [Google Scholar] [CrossRef]
- Teng, Y.; Zhao, Y.; Wu, Q.; Li, X.; Hao, X.; Xiong, M.; Huang, Y. High-Performance Long-Wavelength InAs/GaSb Superlattice Detectors Grown by MOCVD. IEEE Photon. Technol. Lett. 2019, 31, 185–188. [Google Scholar] [CrossRef]
- Zhao, Y.; Teng, Y.; Hao, X.; Wu, Q.; Miao, J.; Li, X.; Xiong, M.; Huang, Y. Optimization of Long-Wavelength InAs/GaSb Superlattice Photodiodes With Al-Free Barriers. IEEE Photon. Technol. Lett. 2020, 32, 19–22. [Google Scholar] [CrossRef]
- Zhu, H.; Hao, X.; Teng, Y.; Liu, J.; Zhu, H.; Li, M.; Huai, Y.; Huang, Y. Long-Wavelength InAs/GaSb Superlattice Detectors With Low Dark Current Density Grown by MOCVD. IEEE Photon. Technol. Lett. 2021, 33, 429–432. [Google Scholar] [CrossRef]
- Yang, Q.K.; Fuchs, F.; Schmitz, J.; Pletschen, W. Investigation of Trap-Assisted Tunneling Current in InAs/(GaIn)Sb Superlattice Long-Wavelength Photodiodes. Appl. Phys. Lett. 2002, 81, 4757–4759. [Google Scholar] [CrossRef]
- Wei, Y.; Razeghi, M. Modeling of Type-II InAs/GaSb Superlattices Using an Empirical Tight-Binding Method and Interface Engineering. Phys. Rev. B 2004, 69, 085316. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wu, Q.; Teng, Y.; Hao, X.; Huang, Y. Exploring the Optimum Growth Conditions for InAs/GaSb and GaAs/GaSb Superlattices on InAs Substrates by Metalorganic Chemical Vapor Deposition. J. Cryst. Growth 2018, 502, 71–75. [Google Scholar] [CrossRef]
- Plis, E.; Klein, B.; Myers, S.; Gautam, N.; Smith, E.P.; Krishna, S. High Operating Temperature Midwave Infrared InAs/GaSb Superlattice Photodetectors on (111) GaSb Substrates. IEEE Electron. Device Lett. 2013, 34, 426–428. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Plis, E.A.; Myers, S.A.; Morath, C.P.; Cowan, V.M.; Krishna, S. High-Operating Temperature MWIR Unipolar Barrier Photodetectors Based on Strained Layer Superlattices. In Proceedings of the Infrared Technology and Applications XLI, Baltimore, MD, USA, 4 June 2015; Andresen, B.F., Fulop, G.F., Hanson, C.M., Norton, P.R., Eds.; p. 945113. [Google Scholar]
- Nguyen, B.-M.; Hoffman, D.; Wei, Y.; Delaunay, P.-Y.; Hood, A.; Razeghi, M. Very High Quantum Efficiency in Type-II InAs/GaSb Superlattice Photodiode with Cutoff of 12 μm. Appl. Phys. Lett. 2007, 90, 231108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Liu, J.; Zhu, H.; Huai, Y.; Li, M.; Liu, Z.; Huang, Y. High Operating Temperature InAs/GaSb Superlattice Based Mid Wavelength Infrared Photodetectors Grown by MOCVD. Photonics 2021, 8, 564. https://doi.org/10.3390/photonics8120564
Zhu H, Liu J, Zhu H, Huai Y, Li M, Liu Z, Huang Y. High Operating Temperature InAs/GaSb Superlattice Based Mid Wavelength Infrared Photodetectors Grown by MOCVD. Photonics. 2021; 8(12):564. https://doi.org/10.3390/photonics8120564
Chicago/Turabian StyleZhu, He, Jiafeng Liu, Hong Zhu, Yunlong Huai, Meng Li, Zhen Liu, and Yong Huang. 2021. "High Operating Temperature InAs/GaSb Superlattice Based Mid Wavelength Infrared Photodetectors Grown by MOCVD" Photonics 8, no. 12: 564. https://doi.org/10.3390/photonics8120564
APA StyleZhu, H., Liu, J., Zhu, H., Huai, Y., Li, M., Liu, Z., & Huang, Y. (2021). High Operating Temperature InAs/GaSb Superlattice Based Mid Wavelength Infrared Photodetectors Grown by MOCVD. Photonics, 8(12), 564. https://doi.org/10.3390/photonics8120564