Extending the Photon Energy Coverage of a Seeded Free-Electron Laser via Reverse Taper Enhanced Harmonic Cascade
Abstract
:1. Introduction
2. Method and Principles
3. Results
3.1. Performance without Three-Dimensional Effects
3.2. Performance with Three-Dimensional Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kondratenko, A.M.; Saldin, E.L. Generation of Coherent Radiation by a relativistic Electron Beam in an Ondu-lator. Part. Accel. 1980, 10, 207–216. [Google Scholar]
- Bonifacio, R.; Pellegrini, C.; Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 1984, 50, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Dattoli, G.; Marino, A.; Renieri, A.; Romanelli, F. Progress in the Hamiltonian picture of the free-electron laser. IEEE J. Quantum Electron. 1981, 17, 1371–1387. [Google Scholar] [CrossRef]
- Colson, W. Tutorial on classical free electron laser theory. Laser Handb. 1990, 6, 75. [Google Scholar] [CrossRef]
- Andruszkow, J.; Aune, B.; Ayvazyan, V.; Baboi, N.; Bakker, R.; Balakin, V.; Barni, D.; Bazhan, A.; Bernard, M.; Bosotti, A.; et al. First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength. Phys. Rev. Lett. 2000, 85, 3825–3829. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Kim, K.-J. Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top. Accel. Beams 2007, 10, 034801. [Google Scholar] [CrossRef]
- Feng, C.; Deng, H.-X. Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 2018, 29, 160. [Google Scholar] [CrossRef]
- Hau-Riege, S.P.; Chapman, H.N.; Krzywinski, J.; Sobierajski, R.; Bajt, S.; London, R.A.; Bergh, M.; Caleman, C.; Nietubyć, R.; Juha, L.; et al. Subnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter. Phys. Rev. Lett. 2007, 98, 145502. [Google Scholar] [CrossRef] [Green Version]
- Young, L.; Kanter, E.P.; Krässig, B.; Li, Y.; March, A.M.; Pratt, S.T.; Santra, R.; Southworth, S.H.; Rohringer, N.; DiMauro, L.F.; et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nat. Cell Biol. 2010, 466, 56–61. [Google Scholar] [CrossRef]
- Inoue, I.; Osaka, T.; Hara, T.; Tanaka, T.; Inagaki, T.; Fukui, T.; Goto, S.; Inubushi, Y.; Kimura, H.; Kinjo, R.; et al. Generation of narrow-band X-ray free-electron laser via reflection self-seeding. Nat. Photonics 2019, 13, 319–322. [Google Scholar] [CrossRef]
- Feldhaus, J.; Saldin, E.L.; Schneider, J.R.; Schneidmiller, E.A.; Yurkov, M.V. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun. 1997, 140, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Amann, J.; Cocco, D.; Field, C.; Hastings, J.; Heimann, P.; Huang, Z.; Loos, H.; Welch, J.; Wu, J.; et al. System Design for self-seeding the LCLS at Soft X-ray energies. In Proceedings of the 24th International FEL Conference, Nara, Japan, 26–31 August 2012. [Google Scholar]
- Stoupin, S.; Blank, V.; Terentyev, S.; Polyakov, S.; Denisov, V.; Kuznetsov, M.; Shvyd’Ko, Y.; Shu, D.; Emma, P.; Maj, J.; et al. Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers. Diam. Relat. Mater. 2013, 33, 1–4. [Google Scholar] [CrossRef]
- Zhang, K.; Qi, Z.; Feng, C.; Deng, H.; Wang, D.; Zhao, Z. Extending the photon energy coverage of an x-ray self-seeding FEL via the re-verse taper enhanced harmonic generation technique. Nucl. Instrum. Methods A 2017, 854, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Emma, C.; Lutman, A.; Guetg, M.; Krzywinski, J.; Marinelli, A.; Wu, J.; Pellegrini, C. Experimental demonstration of fresh bunch self-seeding in an X-ray free electron laser. Appl. Phys. Lett. 2017, 110, 154101. [Google Scholar] [CrossRef]
- Ratner, D.; Abela, R.; Amann, J.; Behrens, C.; Bohler, D.; Bouchard, G.; Bostedt, C.; Boyes, M.; Chow, K.; Cocco, D.; et al. Experimental Demonstration of a Soft X-Ray Self-Seeded Free-Electron Laser. Phys. Rev. Lett. 2015, 114, 054801. [Google Scholar] [CrossRef]
- Amann, J.; Berg, W.J.; Blank, V.D.; Decker, F.-J.; Ding, Y.; Emma, P.; Feng, Y.; Frisch, J.; Fritz, D.M.; Hastings, J.B.; et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 2012, 6, 693–698. [Google Scholar] [CrossRef]
- Yu, L.H. Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 1991, 44, 5178–5193. [Google Scholar] [CrossRef]
- Yu, L.; Di Mauro, L.; Doyuran, A.; Graves, W.S.; Johnson, E.D.; Heese, R.; Krinsky, S.; Loos, H.; Murphy, J.B.; Rakowsky, G.; et al. First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser. Phys. Rev. Lett. 2003, 91, 074801. [Google Scholar] [CrossRef]
- Deng, H.; Dai, Z. Harmonic lasing of X-ray free electron laser: On the way to smaller and cheaper. Chin. Phys. C 2013, 37, 102001. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, M.; Lin, G.; Gu, Q.; Deng, H.-X.; Chen, J.; Wang, D.; Zhao, Z. Design study for the cascaded HGHG experiment based on the SDUV-FEL. Chin. Sci. Bull. 2012, 57, 3423–3429. [Google Scholar] [CrossRef] [Green Version]
- Dattoli, G.; Ottaviani, P.L. Design considerations for x-ray free electron lasers. J. Appl. Phys. 1999, 86, 5331–5336. [Google Scholar] [CrossRef]
- Xiang, D.; Stupakov, G. Echo-enabled harmonic generation free electron laser. Phys. Rev. Spec. Top. Accel. Beams 2009, 12, 030702. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.T.; Wang, D.; Chen, J.H.; Chen, Z.H.; Deng, H.X.; Ding, J.G.; Feng, C.; Gu, Q.; Huang, M.M.; Lan, T.; et al. First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics 2012, 6, 360–363. [Google Scholar] [CrossRef]
- Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; et al. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-Ray Free Electron Lasers. Phys. Rev. Lett. 2012, 108, 024802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T.O.; Weathersby, S.; Xiang, D. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique. Phys. Rev. Spec. Top. Accel. Beams 2014, 17, 070702. [Google Scholar] [CrossRef] [Green Version]
- Hemsing, E.; Dunning, M.; Garcia, B.; Hast, C.; Raubenheimer, T.; Stupakov, G.; Xiang, D. Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nat. Photonics 2016, 10, 512–515. [Google Scholar] [CrossRef]
- Ribič, P.R.; Abrami, A.; Badano, L.; Bossi, M.; Braun, H.-H.; Bruchon, N.; Capotondi, F.; Castronovo, D.; Cautero, M.; Cinquegrana, P.; et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser. Nat. Photonics 2019, 13, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Deng, H.; Zhang, M.; Wang, X.; Chen, S.; Liu, T.; Zhou, K.; Gu, D.; Wang, Z.; Jiang, Z.; et al. Coherent extreme ultraviolet free-electron laser with echo-enabled har-monic generation. Phys. Rev. Accel. Beams 2019, 22, 050703. [Google Scholar] [CrossRef] [Green Version]
- Rebernik, P.; Roussel, E.; Penn, G.; De Ninno, G.; Giannessi, L.; Penco, G.; Allaria, E. Echo-Enabled Harmonic Generation Studies for the FERMI Free-Electron Laser. Photonics 2017, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Saldin, E.; Schneidmiller, E.; Yurkov, M. The features of an FEL oscillator with a tapered undulator. Opt. Commun. 1993, 103, 297–306. [Google Scholar] [CrossRef]
- Saldin, E.; Schneidmiller, E.; Yurkov, M.V. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses. Phys. Rev. Spec. Top. Accel. Beams 2006, 9, 050702. [Google Scholar] [CrossRef] [Green Version]
- Schneidmiller, E.; Yurkov, M.V. Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper. Phys. Rev. Spec. Top. Accel. Beams 2013, 16, 110702. [Google Scholar] [CrossRef] [Green Version]
- Lutman, A.A.; MacArthur, J.P.; Ilchen, M.; Lindahl, A.O.; Buck, J.; Coffee, R.N.; Dakovski, G.L.; Dammann, L.; Ding, Y.; Dürr, H.A.; et al. Polarization control in an X-ray free-electron laser. Nat. Photonics 2016, 10, 468–472. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, T.; Feng, C. Reverse taper enhanced harmonic lasing for seeding an X-ray free-electron laser. Nucl. Instrum. Methods A 2021, 988, 164931. [Google Scholar] [CrossRef]
- Colson, W.B. Free-electron lasers operating in higher harmonics. Phys. Rev. A 1981, 24, 639–641. [Google Scholar] [CrossRef]
- Freund, H.; Biedron, S.; Milton, S. Nonlinear harmonic generation in free-electron lasers. IEEE J. Quantum Electron. 2000, 36, 275–281. [Google Scholar] [CrossRef]
- Reiche, S. GENESIS 1.3: A fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods A 1999, 429, 243–248. [Google Scholar] [CrossRef]
- Zhou, K.; Feng, C.; Wang, D. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme. Nucl. Instrum. A 2016, 834, 30–35. [Google Scholar] [CrossRef]
- Chao, A.W.; Tigner, M. Handbook of Accelerator Physics and Engineering; World Scientific: Singapore, 2006. [Google Scholar]
- Xiang, D.; Stupakov, G. Tolerance study for the echo-enabled harmonic generation free electron laser. In Proceedings of the IPAC, Vancouver, BC, Canada, 4–8 May 2009. [Google Scholar]
- Douglas, D.R.; Benson, S.V.; Hutton, A. Hutton. Control of Coherent Synchrotron Radiation and Micro-Bunching Effects during Transport of High Brightness Electron Beams. JLAB-ACP 2014, 1751, 1–27. [Google Scholar]
- Marinelli, A.; Pellegrini, C.; Giannessi, L.; Reiche, S. Comparative study of nonideal beam effects in high gain harmonic gen-eration and Self-seeded free electron lasers. Phys. Rev. Accel. Beams 2010, 13, 070701. [Google Scholar] [CrossRef]
- Douglas, D.; Benson, S.; Hofler, A. Control of Synchrotron Radiation Effects during Recirculation. In Proceedings of the IPAC 2015, Richmond, VA, USA, 3–8 May 2015. [Google Scholar]
- Mitri, S.D. Coherent Synchrotron Radiation and Microbunching Instability. CERN Yellow Rep. Sch. Proc. 2018, 1, 381–400. [Google Scholar]
- Heifets, S.; Stupakov, G.; Krinsky, S. Coherent synchrotron radiation instability in a bunch compressor. Phys. Rev. Accel. Beams 2002, 5, 064401. [Google Scholar] [CrossRef] [Green Version]
- Stupakov, G.; Heifets, S. Beam instability and microbunching due to coherent synchrotron radiation. Phys. Rev. Spec. Top. Accel. Beams 2002, 5, 054402. [Google Scholar] [CrossRef] [Green Version]
- Derbenev, Y.S.; Saldin, E.L.; Shiltsev, V.D.; Rossbach, J. Microbunch Radiative Tail-Head Interaction. DESY Notkes-Trasse 1995, 85, 22603. [Google Scholar]
- Lou, W.; Hoffstaetter, G.H. Coherent synchrotron radiation wake expressions with two bending magnets and simulation results for a multiturn energy-recovery linac. Phys. Rev. Accel. Beams 2020, 23, 054404. [Google Scholar] [CrossRef]
- Huang, Z.; Borland, M.; Emma, P.; Kim, K.J. Theory and Simulation of CSR Microbunching in Bunch Compressors. SLAC-PUB 2002, 507, 318–322. [Google Scholar]
- Borland, M. Elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation; Argonne National Lab.: Lemont, IL, USA, 2000. [Google Scholar]
- Hemsing, E.; Marcus, G.; Fawley, W.M.; Schoenlein, R.W.; Coffee, R.; Dakovski, G.; Hastings, J.; Huang, Z.; Ratner, D.; Raubenheimer, T.; et al. Soft x-ray seeding studies for the SLAC Linac Coherent Light Source II. Phys. Rev. Accel. Beams 2019, 22, 110701. [Google Scholar] [CrossRef] [Green Version]
- Farley, D.T. The effect of Coulomb collisions on incoherent scattering of radio waves by a plasma. J. Geophys. Res. Space Phys. 1964, 69, 197–200. [Google Scholar] [CrossRef]
- Stupakov, G. Effect of Coulomb Collisions on Echo-enabled Harmonic Generation (EEHG). In Proceedings of the 33rd International Free Electron Laser Conference, Shanghai, China, 22–26 August 2011. [Google Scholar]
- Huang, Z. Intrabeam Scattering in an X-ray FEL Driver; SLAC National Accelerator Lab.: Menlo Park, CA, USA, 2018. [Google Scholar]
- Zhao, Z.; Feng, C.; Zhang, K.-Q. Two-stage EEHG for coherent hard X-ray generation based on a superconducting linac. Nucl. Sci. Technol. 2017, 28, 117. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Electron beam energy | 2.5 GeV |
Energy spread | 0.005% |
Peak current | 500 A |
Bunch length (rms) | 100 fs |
Normalized emittance | 1 µm-rad |
Longitudinal phase space | Uniform |
Current profile | Gaussian |
Seed laser wavelength (1,2) | 265 nm |
Reverse tapered undulator period | 43 mm |
Radiation undulator period | 27 mm |
Seed laser length | 200 fs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Liu, T.; Qi, Z.; Fu, X.; Feng, C.; Deng, H.; Liu, B. Extending the Photon Energy Coverage of a Seeded Free-Electron Laser via Reverse Taper Enhanced Harmonic Cascade. Photonics 2021, 8, 44. https://doi.org/10.3390/photonics8020044
Zhang K, Liu T, Qi Z, Fu X, Feng C, Deng H, Liu B. Extending the Photon Energy Coverage of a Seeded Free-Electron Laser via Reverse Taper Enhanced Harmonic Cascade. Photonics. 2021; 8(2):44. https://doi.org/10.3390/photonics8020044
Chicago/Turabian StyleZhang, Kaiqing, Tao Liu, Zheng Qi, Xiaoxi Fu, Chao Feng, Haixiao Deng, and Bo Liu. 2021. "Extending the Photon Energy Coverage of a Seeded Free-Electron Laser via Reverse Taper Enhanced Harmonic Cascade" Photonics 8, no. 2: 44. https://doi.org/10.3390/photonics8020044
APA StyleZhang, K., Liu, T., Qi, Z., Fu, X., Feng, C., Deng, H., & Liu, B. (2021). Extending the Photon Energy Coverage of a Seeded Free-Electron Laser via Reverse Taper Enhanced Harmonic Cascade. Photonics, 8(2), 44. https://doi.org/10.3390/photonics8020044