Automatic Bias Control Technique of Dual-Parallel Mach–Zehnder Modulator Based on Simulated Annealing Algorithm for Quadrupled Signal Generation
Abstract
:1. Introduction
2. The Proposed Automatic Bias Control Technique
Algorithm 1: Bias points searching algorithm. |
3. Validation of the Proposed Technique
3.1. Temperature Test
3.2. Quadrupled Signal Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Iezekiel, S.; Burla, M.; Klamkin, J.; Marpaung, D.; Capmany, J. RF engineering meets optoelectronics: Progress in integrated microwave photonics. IEEE Microw. Mag. 2015, 16, 28–45. [Google Scholar] [CrossRef]
- Yao, J. A tutorial on microwave photonics. Photonics Soc. Newsl. 2012, 24, 4–12. [Google Scholar]
- Gao, J.; Wu, H. Multi-function Mach-Zehnder modulator for pulse shaping and generation. Opt. Express 2016, 24, 22239–22249. [Google Scholar] [CrossRef]
- Halbfinger, D.M. Israel says it struc k Iranian ‘killer drone’ sites in Syria. The NewYork Times, 25 August 2019. [Google Scholar]
- Mohapatra, A.K.; Bason, M.G.; Butscher, B.; Weatherill, K.J.; Adams, C.S. A giant electro-optic effect using polarizable dark states. Nat. Phys. 2008, 4, 890–894. [Google Scholar] [CrossRef] [Green Version]
- Snoddy, J.; Li, Y.; Ravet, F.; Bao, X. Stabilization of electro-optic modulator bias voltage drift using a lock-in amplifier and a proportional-integral-derivative controller in a distributed Brillouin sensor system. Appl. Opt. 2007, 46, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.S.; Nazarathy, M. Bias control for optical OFDM transmitters. IEEE Photonics Technol. Lett. 2010, 22, 1030–1032. [Google Scholar] [CrossRef]
- Gui, T.; Li, C.; Yang, Q.; Xiao, X.; Meng, L.; Li, C.; Yi, X.; Jin, C.; Li, Z. Auto bias control technique for optical OFDM transmitter with bias dithering. Opt. Express 2013, 21, 5833–5841. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, H.; Yoshida, E.; Miyamoto, Y. Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation. J. Light. Technol. 2012, 30, 962–968. [Google Scholar] [CrossRef]
- Cho, P.S.; Khurgin, J.B.; Shpantzer, I. Closed-loop bias control of optical quadrature modulator. IEEE Photonics Technol. Lett. 2006, 18, 2209–2211. [Google Scholar] [CrossRef]
- Li, X.; Deng, L.; Chen, X.; Cheng, M.; Fu, S.; Tang, M.; Liu, D. Modulation-format-free and automatic bias control for optical IQ modulators based on dither-correlation detection. Opt. Express 2017, 25, 9333–9345. [Google Scholar] [CrossRef]
- Kim, M.H.; Yu, B.M.; Choi, W.Y. A Mach-Zehnder modulator bias controller based on OMA and average power monitoring. IEEE Photonics Technol. Lett. 2017, 29, 2043–2046. [Google Scholar] [CrossRef]
- Shi, S.; Yuan, J.; Huang, Q.; Shi, C.; Luo, X.; Lu, S.; Yuan, P.; Yu, H.; Yue, Q. Bias controller of Mach-Zehnder modulator for electro-optic analog-to-digital converter. Micromachines 2019, 10, 800. [Google Scholar] [CrossRef] [Green Version]
- Sotoodeh, M.; Beaulieu, Y.; Harley, J.; McGhan, D.L. Modulator bias and optical power control of optical complex E-field modulators. J. Light. Technol. 2011, 29, 2235–2248. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, Z.; Zhang, C.; Zhu, L.; Tao, Z.; Chen, Z. Coherent detection-based automatic bias control of Mach–Zehnder modulators for various modulation formats. J. Light. Technol. 2014, 32, 2502–2509. [Google Scholar] [CrossRef]
- Li, H.; Huang, T.; Ke, C.; Fu, S.; Shum, P.P.; Liu, D. Photonic generation of frequency-quadrupled microwave signal with tunable phase shift. IEEE Photonics Technol. Lett. 2013, 26, 220–223. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, S.; Li, X.; HUang, A.; Qu, K.; Lin, T. Photonic generation of frequency-octupled and frequency-quadrupled microwave signals using a dual-parallel polarization modulator. Opt. Quantum Electron. 2016, 48, 1–12. [Google Scholar] [CrossRef]
- Li, W.; Yao, J. Microwave generation based on optical domain microwave frequency octupling. IEEE Photonics Technol. Lett. 2009, 22, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wen, A.; Li, N.; Wu, X.; Zhang, H. Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop. J. Mod. Opt. 2015, 62, 1291–1296. [Google Scholar] [CrossRef]
- Lin, C.T.; Shih, P.T.; Chen, J.; Jiang, W.J.; Dai, S.P.; Peng, P.C.; Ho, Y.L.; Chi, S. Optical millimeter-wave up-conversion employing frequency quadrupling without optical filtering. IEEE Trans. Microw. Theory Tech. 2009, 57, 2084–2092. [Google Scholar]
- Fu, Y.; Zhang, X.; Hraimel, B.; Liu, T.; Shen, D. Mach-Zehnder: A review of bias control techniques for Mach-Zehnder modulators in photonic analog links. IEEE Microw. Mag. 2013, 14, 102–107. [Google Scholar] [CrossRef]
- Bae, Y.; Yi, M.; Shin, J.; Lee, S.G. X-band photonic-based pulsed radar architecture with a high range resolution. Appl. Sci. 2020, 10, 6558. [Google Scholar] [CrossRef]
[10] | [11] | [12] | [13] | [14] | [15] | [16] | This work | |
---|---|---|---|---|---|---|---|---|
Methods | dithering | power monitoring | dithering | power monitoring | dithering | power monitoring | dithering | power monitoring |
Verification | time (6.5 h) | eye diagram | time (35 min) | eye diagram | time (35 min) | BER * measurement | time (40 min) | temperature (11 h) |
Applications | QPSK | QPSK | QPSK | - | ADC | QPSK | QPSK | RF signal generation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, Y.; Jang, S.; Yoo, S.; Yi, M.; Ryoo, J.; Shin, J. Automatic Bias Control Technique of Dual-Parallel Mach–Zehnder Modulator Based on Simulated Annealing Algorithm for Quadrupled Signal Generation. Photonics 2021, 8, 80. https://doi.org/10.3390/photonics8030080
Bae Y, Jang S, Yoo S, Yi M, Ryoo J, Shin J. Automatic Bias Control Technique of Dual-Parallel Mach–Zehnder Modulator Based on Simulated Annealing Algorithm for Quadrupled Signal Generation. Photonics. 2021; 8(3):80. https://doi.org/10.3390/photonics8030080
Chicago/Turabian StyleBae, Youngseok, Sunghoon Jang, Sungjun Yoo, Minwoo Yi, Joonhyung Ryoo, and Jinwoo Shin. 2021. "Automatic Bias Control Technique of Dual-Parallel Mach–Zehnder Modulator Based on Simulated Annealing Algorithm for Quadrupled Signal Generation" Photonics 8, no. 3: 80. https://doi.org/10.3390/photonics8030080
APA StyleBae, Y., Jang, S., Yoo, S., Yi, M., Ryoo, J., & Shin, J. (2021). Automatic Bias Control Technique of Dual-Parallel Mach–Zehnder Modulator Based on Simulated Annealing Algorithm for Quadrupled Signal Generation. Photonics, 8(3), 80. https://doi.org/10.3390/photonics8030080